Differential localization of human nongastric H+-K+-ATPase ATP1AL1 in polarized renal epithelial cells

2000 ◽  
Vol 279 (3) ◽  
pp. F417-F425 ◽  
Author(s):  
Jürgen Reinhardt ◽  
Alexander V. Grishin ◽  
Hans Oberleithner ◽  
Michael J. Caplan

The human H+-K+-ATPase, ATP1AL1, belongs to the subgroup of nongastric, K+-transporting ATPases. In concert with the structurally related gastric H+-K+-ATPase, it plays a major role in K+ reabsorption in various tissues, including colon and kidney. Physiological and immunocytochemical data suggest that the functional heteromeric ion pumps are usually found in the apical plasma membranes of renal epithelial cells. However, the low expression levels of characteristic nongastric ion pumps makes it difficult to verify their spatial distribution in vivo. To investigate the sorting behavior of ATP1AL1, we expressed this pump by stable transfection in MDCK and LLC-PK1 renal epithelial cell lines. Stable interaction of ATP1AL1 with either the endogenous Na+-K+-ATPase β-subunit or the gastric H+-K+-ATPase β-subunit was tested by confocal immunofluorescence microscopy and surface biotinylation. In cells transfected with ATP1AL1 alone, the α-subunit accumulated intracellularly, consistent with its inability to assemble and travel to the plasma membrane with the endogenous Na+-K+-ATPase β-subunit. Cotransfection of ATP1AL1 with the gastric H+-K+-ATPase β-subunit resulted in plasma membrane localization of both pump subunits. In cotransfected MDCK cells the heteromeric ion pump was predominantly polarized to the apical plasma membrane. Functional expression of ATP1AL1 was confirmed by 86Rb+uptake measurements. In contrast, cotransfected LLC-PK1cells accumulate ATP1AL1 at the lateral membrane. The distinct polarization of ATP1AL1 indicates that the α-subunit encodes sorting information that is differently interpreted by cell type-specific sorting mechanisms.

Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 1057
Author(s):  
Richard Bouley ◽  
Naofumi Yui ◽  
Abby Terlouw ◽  
Pui W. Cheung ◽  
Dennis Brown

We previously showed that in polarized Madin–Darby canine kidney (MDCK) cells, aquaporin-2 (AQP2) is continuously targeted to the basolateral plasma membrane from which it is rapidly retrieved by clathrin-mediated endocytosis. It then undertakes microtubule-dependent transcytosis toward the apical plasma membrane. In this study, we found that treatment with chlorpromazine (CPZ, an inhibitor of clathrin-mediated endocytosis) results in AQP2 accumulation in the basolateral, but not the apical plasma membrane of epithelial cells. In MDCK cells, both AQP2 and clathrin were concentrated in the basolateral plasma membrane after CPZ treatment (100 µM for 15 min), and endocytosis was reduced. Then, using rhodamine phalloidin staining, we found that basolateral, but not apical, F-actin was selectively reduced by CPZ treatment. After incubation of rat kidney slices in situ with CPZ (200 µM for 15 min), basolateral AQP2 and clathrin were increased in principal cells, which simultaneously showed a significant decrease of basolateral compared to apical F-actin staining. These results indicate that clathrin-dependent transcytosis of AQP2 is an essential part of its trafficking pathway in renal epithelial cells and that this process can be inhibited by selectively depolymerizing the basolateral actin pool using CPZ.


2001 ◽  
Vol 114 (7) ◽  
pp. 1331-1341 ◽  
Author(s):  
A.K. Criss ◽  
D.M. Ahlgren ◽  
T.S. Jou ◽  
B.A. McCormick ◽  
J.E. Casanova

The bacterial pathogen Salmonella typhimurium colonizes its animal hosts by inducing its internalization into intestinal epithelial cells. This process requires reorganization of the actin cytoskeleton of the apical plasma membrane into elaborate membrane ruffles that engulf the bacteria. Members of the Ρ family of small GTPases are critical regulators of actin structure, and in nonpolarized cells, the GTPase Cdc42 has been shown to modulate Salmonella entry. Because the actin architecture of epithelial cells is organized differently from that of nonpolarized cells, we examined the role of two ‘Rgr; family GTPases, Cdc42 and Rac1, in invasion of polarized monolayers of MDCK cells by S. typhimurium. Surprisingly, we found that endogenous Rac1, but not Cdc42, was activated during bacterial entry at the apical pole, and that this activation required the bacterial effector protein SopE. Furthermore, expression of dominant inhibitory Rac1 but not Cdc42 significantly inhibited apical internalization of Salmonella, indicating that Rac1 activation is integral to the bacterial entry process. In contrast, during basolateral internalization, both Cdc42 and Rac1 were activated; however, neither GTPase was required for entry. These findings, which differ significantly from previous observations in nonpolarized cells, indicate that the host cell signaling pathways activated by bacterial pathogens may vary with cell type, and in epithelial tissues may further differ between plasma membrane domains.


1990 ◽  
Vol 1 (12) ◽  
pp. 921-936 ◽  
Author(s):  
M J van Zeijl ◽  
K S Matlin

The effects of microtubule perturbation on the transport of two different viral glycoproteins were examined in infected Madin-Darby canine kidney (MDCK) cells grown on both permeable and solid substrata. Quantitative biochemical analysis showed that the microtubule-depolymerizing drug nocodazole inhibited arrival of influenza hemagglutinin on the apical plasma membrane in MDCK cells grown on both substrata. In contrast, the microtubule-stabilizing drug taxol inhibited apical appearance of hemagglutinin only when MDCK cells were grown on permeable substrata. On the basis of hemagglutinin mobility on sodium dodecyl sulfate gels and its sensitivity to endo H, it was evident that nocodazole and taxol arrested hemagglutinin at different intracellular sites. Neither drug caused a significant increase in the amount of hemagglutinin detected on the basolateral plasma membrane domain. In addition, neither drug had any noticeable effect on the transport of the vesicular stomatitis virus (VSV)-G protein to the basolateral surface. These results shed light on previous conflicting reports using this model system and support the hypothesis that microtubules play a role in the delivery of membrane glycoproteins to the apical, but not the basolateral, domain of epithelial cells.


2008 ◽  
Vol 294 (1) ◽  
pp. F38-F46 ◽  
Author(s):  
Oleh Pochynyuk ◽  
Vladislav Bugaj ◽  
Alain Vandewalle ◽  
James D. Stockand

Activity of the epithelial sodium channel (ENaC) is limiting for Na+ reabsorption at the distal nephron. Phosphoinositides, such as phosphatidylinositol 4,5-biphosphate [PI(4,5)P2] modulate the activity of this channel. Activation of purinergic receptors triggers multiple events, including activation of PKC and PLC, with the latter depleting plasma membrane PI(4,5)P2. Here, we investigate regulation of ENaC in renal principal cells by purinergic receptors via PLC and PI(4,5)P2. Purinergic signaling rapidly decreases ENaC open probability and apical membrane PI(4,5)P2 levels with similar time courses. Moreover, inhibiting purinergic signaling with suramin rescues ENaC activity. The PLC inhibitor U73122, but not U73343, its inactive analog, recapitulates the action of suramin. In contrast, modulating PKC signaling failed to affect purinergic regulation of ENaC. Unexpectedly, inhibiting either purinergic receptors or PLC in resting cells dramatically increased ENaC activity above basal levels, indicating tonic activation of purinergic signaling in these polarized renal epithelial cells. Increased ENaC activity was associated with elevation of apical membrane PI(4,5)P2 levels. Subsequent treatment with ATP in the presence of inhibited purinergic signaling failed to decrease ENaC activity and apical membrane PI(4,5)P2 levels. Dwell-time analysis reveals that depletion of PI(4,5)P2 forces ENaC toward a closed state. In contrast, increasing PI(4,5)P2 levels above basal values locks the channel in an open state interrupted by brief closings. Thus our results suggest that purinergic control of apical membrane PI(4,5)P2 levels is a major regulator of ENaC activity in renal epithelial cells.


1989 ◽  
Vol 108 (3) ◽  
pp. 821-832 ◽  
Author(s):  
J E Skibbens ◽  
M G Roth ◽  
K S Matlin

Biochemical changes in the influenza virus hemagglutinin during intracellular transport to the apical plasma membrane of epithelial cells were investigated in Madin-Darby canine kidney (MDCK) cells and in LLC-PK1 cells stably transfected with a hemagglutinin gene. After pulse-labeling a substantial fraction of hemagglutinin was observed to become insoluble in isotonic solutions of Triton X-100. Insolubility of hemagglutinin was detected late in the transport pathway after addition of complex sugars in the Golgi complex but before insertion of the protein in the plasma membrane. Insolubility was not dependent on oligosaccharide modification since deoxymannojirimycin (dMM), which inhibits mannose trimming, failed to prevent its onset. Insolubility was not due to assembly of virus particles at the plasma membrane because insoluble hemagglutinin was also observed in transfected cells. Hemagglutinin insolubility was also seen in MDCK cells cultured in suspension and in chick embryo fibroblasts, indicating that insolubility and plasma membrane polarity are not simply correlated. In addition to insolubility, an apparent transport-dependent reduction of the disulfide bond linking HA1 and HA2 in hemagglutinin was detected. Because of the timing of both insolubility and the loss of the disulfide bond, these modifications may be important in the delivery of the hemagglutinin to the cell surface.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Ce Zhang ◽  
Yue Chen ◽  
Shijin Sun ◽  
Yikai Zhang ◽  
Lina Wang ◽  
...  

Selective protein distribution on distinct plasma membranes is important for epithelial cell function. To date, how proteins are directed to specific epithelial cell surface is not fully understood. Here we report a conserved DSSDE motif in LDL-receptor (LDLR) modules of corin (a transmembrane serine protease) and CD320 (a receptor for vitamin B12 uptake), which regulates apical membrane targeting in renal epithelial cells. Altering this motif prevents specific apical corin and CD320 expression in polarized Madin–Darby canine kidney (MDCK) cells. Mechanistic studies indicate that this DSSDE motif participates in a Rab11a-dependent mechanism that specifies apical sorting. In MDCK cells, inhibition of Rab11a, but not Rab11b, expression leads to corin and CD320 expression on both apical and basolateral membranes. Together, our results reveal a novel molecular recognition mechanism that regulates LDLR module-containing proteins in their specific apical expression in polarized renal epithelial cells.


Author(s):  
Greg Martin ◽  
Rohit Cariappa ◽  
Ann L. Hubbard

The plasma membrane of polarized epithelial cells is composed of two structurally and functionally distinct domains -- the apical and basolateral -- that also differ in molecular composition. The routes followed by integral membrane proteins from their site of synthesis to their site of function varies between different kinds of epithelia. Madin-Darby canine kidney (MDCK) cells deliver plasma membrane proteins directly to the correct domain, while polarized hepatocytes deliver all newly synthesized plasma membrane proteins initially to the basolateral membrane, then retrieve and redirect the apical membrane proteins. We are studying the targeting signals and delivery routes of DPPIV, a single transmembrane protein whose destination is the apical domain in polarized epithelial cells.DPPIV transfected into MDCK cells is delivered to the basolateral plasma membrane after long (13hr) treatment with Brefeldin A (BFA). After BFA’s removal these molecules are retrieved from the basolateral membrane and transcytosed to the apical plasma membrane. This protocol provides a useful model for studies of the indirect route of protein sorting in polarized epithelial cells, since DPPIV at the basolateral surface can be labeled with specific antibody and then subsequently followed in living cells.


2004 ◽  
Vol 286 (2) ◽  
pp. F363-F369 ◽  
Author(s):  
Sertac N. Kip ◽  
Emanuel E. Strehler

Plasma membrane Ca2+-ATPases (PMCAs) are a ubiquitous system for the expulsion of Ca2+ from eukaryotic cells. In tight monolayers of polarized Madin-Darby canine kidney (MDCK) cells representing a distal kidney tubule model, PMCAs are responsible for about one-third of the vectorial Ca2+ transport under resting conditions, with the remainder being provided by the Na+/Ca2+ exchanger. Vitamin D3 (VitD) is known to increase PMCA expression and activity in Ca2+-transporting tissues such as the intestine, as well as in osteoblasts and Madin-Darby bovine kidney epithelial cells. We found that VitD upregulated the expression of the PMCAs (mainly PMCA4b) in MDCK cell lysates at the RNA and protein level in a time- and dose-dependent manner. Interestingly, VitD caused a decrease of the PMCAs in the apical plasma membrane fraction and a concomitant increase of the pumps in the basolateral membrane. Functional studies demonstrated that transcellular 45Ca2+ flux from the apical-to-basolateral compartment was significantly enhanced by VitD. These findings demonstrate that VitD is a positive regulator of the PMCAs in MDCK epithelial cells. The correlation of decreased apical/increased basolateral expression of the PMCAs with an increase in transcellular Ca2+ flux from the apical (urine) toward the basolateral (blood) compartment indicates the physiological relevance of VitD function in kidney tubular Ca2+ reabsorption.


2002 ◽  
Vol 278 (2) ◽  
pp. 1101-1107 ◽  
Author(s):  
Bas W. M. van Balkom ◽  
Marcel van Raak ◽  
Sylvie Breton ◽  
Nuria Pastor-Soler ◽  
Richard Bouley ◽  
...  

1969 ◽  
Vol 50 (1) ◽  
pp. 169-178
Author(s):  
J. L. WOOD ◽  
P. S. FARRAND ◽  
W. R. HARVEY

1. The potential profile recorded as a microelectrode is advanced from the blood side through the isolated midgut of Hyalophora cecropia consists of negative plateaus followed by a large positive step to the full midgut potential. 2. Oxygen deprivation diminishes both the positive step and the midgut potential; the negative plateaus are not affected. 3. Changes in the potassium concentration in the blood-side solution affect both the negative plateaus and the midgut potential; the large positive step remains about the same. 4. From these results it is concluded that the positive step is probably produced by the electrogenic potassium pump and that the negative steps are due to a potassium equilibrium potential. 5. The discrete and independent nature of the negative and positive potentials argues that there are two barriers separating a ‘midgut’ compartment from the two bathing solutions. 6. It is inferred that the epithelial cells are the site of the profile negativity and therefore that they constitute the ‘midgut’ compartment. This interpretation implies that the potassium equilibrium potential appears across the basal cell membranes and that electrogenic pump potential appears across the apical plasma membranes of the epithelial cells. 7. The most conservative interpretation of these results is that the electrogenic potassium pump is located somewhere in or on the apical plasma membrane of the epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document