Estimation of pulmonary ventilation with nitrogen and helium, using the mass spectrometer

1959 ◽  
Vol 14 (4) ◽  
pp. 499-506 ◽  
Author(s):  
K. Tokuyasu ◽  
A. Coblentz ◽  
H. R. Bierman

Estimation of pulmonary ventilation was attempted by measuring the elimination of nitrogen and helium with the mass spectrometer. Exhalatory concentrations of nitrogen and helium were continuously recorded in each of 12 normal subjects and 10 patients with pulmonary enphysema or space-occupying pulmonary lesions. Uniform values for both slow and rapid uneven ventilation were found in all normal subjects but always less than in emphysematous states. Ratios of effective tidal volume (Vt) and alveolar ventilation volume (f·Vt) to functional residual capacity P = Vt/Vr and Q = f·Vt/Vr were one half or less than those in the normal subject. Smaller values of uneven ventilation were found for helium than nitrogen. Data computed by the theory of 'periodic' ventilation gave greater values for uneven ventilation (Q) and more accurately represented the physiologic conditions than derived by ‘continuous’ ventilation. Submitted on August 7, 1958

1987 ◽  
Vol 62 (3) ◽  
pp. 1299-1306 ◽  
Author(s):  
R. L. Begle ◽  
J. B. Skatrud ◽  
J. A. Dempsey

The role of conscious factors in the ventilatory compensation for shortened inspiratory muscle length and the potency of this compensatory response were studied in five normal subjects during non-rapid-eye-movement sleep. To shorten inspiratory muscles, functional residual capacity (FRC) was increased and maintained for 2–3 min at a constant level (range of increase 160–1,880 ml) by creating negative pressure within a tank respirator in which the subjects slept. Minute ventilation was maintained in all subjects over the entire range of increased FRC (mean change +/- SE = -3 +/- 1%) through preservation of tidal volume (-2 +/- 2%) despite slightly decreased breathing frequency (-6 +/- 2%). The decrease in frequency (-13 +/- 2%) was due to a prolongation in expiratory time. Inspiratory time shortened (-10 +/- 1%). Mean inspiratory flow increased 15 +/- 3% coincident with an increase in the slope of the moving time average of the integrated surface diaphragmatic electromyogram (67 +/- 21%). End-tidal CO2 did not rise. In two subjects, control tidal volume was increased 35–50% with CO2 breathing. This augmented tidal volume was still preserved when FRC was increased. We concluded that the compensatory response to inspiratory muscle shortening did not require factors associated with the conscious state. In addition, the potency of this response was demonstrated by preservation of tidal volume despite extreme shortening of the inspiratory muscles and increase in control tidal volumes caused by CO2 breathing. Finally, the timing changes we observed may be due to reflexes following shortening of inspiratory muscle length, increase in abdominal muscle length, or cardiovascular changes.


1965 ◽  
Vol 20 (6) ◽  
pp. 1194-1198 ◽  
Author(s):  
S. T. Chiang ◽  
Neal H. Steigbigel ◽  
Harold A. Lyons

Trans-pulmonary pressure, respiratory flow, and tidal volume of seven normal subjects were measured at rest and during treadmill exercise on the level at a speed of 1.5 mph. Pulmonary compliance remained unchanged during exercise. Nonelastic resistance showed an insignificant increase (0.9—1.4 cm H2O per liter per sec). Examination of other parameters which may affect compliance were made. Functional residual capacity decreased 120—200 ml during exercise, tidal volume doubled, and respiratory frequency increased 43.5%, yet none of these factors affected the lung compliance. The phenomenon of “second wind” was experienced by four of the subjects, and nothing was observed to explain its occurrence during exercise. exercise second wind; change in functional residual capacity during exercise; effect of functional residual capacity on compliance; effect of tidal volume on compliance during exercise; effect of respiratory frequency on compliance Submitted on January 15, 1965


1961 ◽  
Vol 16 (4) ◽  
pp. 679-683 ◽  
Author(s):  
Benjamin M. Lewis ◽  
E. J. Hayford-Welsing ◽  
Akio Furusho ◽  
L. C. Reed

In four normal subjects measurements of steady state diffusing capacity for CO (DLCO) by an alveolar sample technique and of the degree of uneven ventilation by nitrogen washout were made simultaneously followed by measurement of DLCO by rebreathing. A methacholine-histamine aerosol was then given. After this aerosol uneven ventilation worsened and steady state DLCO fell, while rebreathing DLCO did not change. Relief of uneven ventilation by isoproterenol was followed by increase of steady state DLCO in two subjects. Alterations in rate and depth of breathing or changes in functional residual capacity do not explain the changes in steady state DLCO which are attributed to increase in uneven ventilation as predicted by the theory of CO absorption. Theory also predicts a lack of effect of uneven ventilation on the rebreathing DLCO, but these results must be accepted with caution because deep breathing may reverse the effects of the methacholine-histamine aerosol and O2 consumption during rebreathing rises after this aerosol. Submitted on December 30, 1960


1979 ◽  
Vol 46 (5) ◽  
pp. 867-871 ◽  
Author(s):  
A. Vinegar ◽  
E. E. Sinnett ◽  
D. E. Leith

Awake mice (22.6--32.6 g) were anesthetized intravenously during head-out body plethysmography. One minute after pentobarbital sodium anesthesia, tidal volume had fallen from 0.28 +/- 0.04 to 0.14 +/- 0.02 ml and frequency from 181 +/- 20 to 142 +/- 8. Functional residual capacity (FRC) decreased by 0.10 +/- 0.02 ml. Expiratory flow-volume curves were linear, highly repeatable, and submaximal over substantial portions of expiration in awake and anesthetized mice; and expiration was interrupted at substantial flows that abruptly fell to and crossed zero as inspiration interrupted relaxed expiration. FRC is maintained at a higher level in awake mice due to a higher tidal volume and frequency coupled with expiratory braking (persistent inspiratory muscle activity or increased glottal resistance). In anesthetized mice, the absence of braking, coupled with reductions in tidal volume and frequency and a prolonged expiratory period, leads to FRCs that approach relaxation volume (Vr). An equation in derived to express the difference between FRC and Vr in terms of the portion of tidal volume expired without braking, the slope of the linear portion of the expiratory flow-volume curve expressed as V/V, the time fraction of one respiratory cycle spent in unbraked expiration, and respiratory frequency.


1963 ◽  
Vol 18 (3) ◽  
pp. 519-522 ◽  
Author(s):  
M. C. Hart ◽  
M. M. Orzalesi ◽  
C. D. Cook

The respiratory anatomic dead space has been measured by the single breath nitrogen washout method of Fowler in 73 normal subjects ranging from 4 to 42 years of age. The volume of the anatomic dead space correlated closely with height (Vd (ml) = 7.585 x Ht (cm)2.363 x 10-4·ɣ = .917), but also with body weight, surface area, and functional residual capacity. When compared on the basis of any of these parameters there was no significant difference between the anatomic dead space values for males and females. Comparisons with available data for newborn infants suggest that the value of the anatomic dead space has a relatively constant relation to height from birth to adulthood. Dead space appears to increase more rapidly than weight, surface area, and functional residual capacity during, at least, the early period of somatic growth. Note: (With the Technical Assistance of J. H. Shaw) Submitted on October 25, 1962


1999 ◽  
Vol 87 (4) ◽  
pp. 1491-1495 ◽  
Author(s):  
Joseph R. Rodarte ◽  
Gassan Noredin ◽  
Charles Miller ◽  
Vito Brusasco ◽  
Riccardo Pellegrino ◽  
...  

During dynamic hyperinflation with induced bronchoconstriction, there is a reduction in lung elastic recoil at constant lung volume (R. Pellegrino, O. Wilson, G. Jenouri, and J. R. Rodarte. J. Appl. Physiol. 81: 964–975, 1996). In the present study, lung elastic recoil at control end inspiration was measured in normal subjects in a volume displacement plethysmograph before and after voluntary increases in mean lung volume, which were achieved by one tidal volume increase in functional residual capacity (FRC) with constant tidal volume and by doubling tidal volume with constant FRC. Lung elastic recoil at control end inspiration was significantly decreased by ∼10% within four breaths of increasing FRC. When tidal volume was doubled, the decrease in computed lung recoil at control end inspiration was not significant. Because voluntary increases of lung volume should not produce airway closure, we conclude that stress relaxation was responsible for the decrease in lung recoil.


1961 ◽  
Vol 16 (1) ◽  
pp. 27-29 ◽  
Author(s):  
Francisco Moreno ◽  
Harold A. Lyons

The changes produced by body posture on total lung capacity and its subdivisions have been reported for all positions except the prone position. Twenty normal subjects, twelve males and eight females, had determinations of total lung capacity in the three body positions, sitting, supine and prone. Tidal volume, minute ventilation and O2 consumption were also measured. The changes found on assumption of the supine position from the sitting position were similar to those previously reported. For the prone position, a smaller inspiratory capacity and a larger expiratory reserve volume were found. The mean values were changed, respectively, –8% and +37%. Associated with these changes was a significant increase of the functional residual capacity by 636 ml. Ventilation did not change significantly from that found during sitting, unlike the findings associated with the supine position, in which position the tidal volume was decreased. Respiratory frequency remained the same for all positions. Submitted on April 5, 1960


1972 ◽  
Vol 42 (2) ◽  
pp. 117-128 ◽  
Author(s):  
B. Bake ◽  
A. R. Fugl-Meyer ◽  
G. Grimby

1. The regional distribution of ventilation was studied with 133Xe techniques in the sitting position in six patients with complete traumatic transection of the cervical spinal cord, 3–40 months after the lesion, and in four normal subjects. The relative contributions of the rib cage and abdomen to ventilation were determined from chest-wall motions. 2. Total lung capacity (TLC) was decreased and residual volume increased in the patients. After correction for the decreased TLC, the distribution of the regional functional residual capacity in the tetraplegic patients was similar to that of the normal subjects. In the patients, where the abdomen contributed to about half of the tidal volume, decreased ventilation of basal regions was demonstrated from measurements of regional tidal volumes (Vtr) and regional 133Xe wash-in curves. 3. The distribution of ventilation in normal persons, however, was not changed by varying the relative contributions of the rib cage and abdomen to the tidal volume, as shown from Vtr and regional 133Xe wash-out measurements. 4. The results in the tetraplegic patients are interpreted as evidence of ‘small airway disease’, presumably from infection of the air way and impairment of the cough.


Sign in / Sign up

Export Citation Format

Share Document