Blood distribution during cardiac arrest induced by hypothermia

1961 ◽  
Vol 16 (3) ◽  
pp. 538-540
Author(s):  
Paul W. Willard ◽  
Steven M. Horvath

Blood volumes with simultaneous blood- and red cell-distribution measurements were determined by the Cr51 technique in four groups of rats. In splenectomized and nonsplenectomized animals, blood volume of the whole body, lung, spleen, liver, kidney, heart, diaphragm, and gastrocnemius muscle was measured in both the control rats (body temperature 37 C) and in rats with hypothermically induced cardiac arrest (body temperature 8–9 C). Splenectomy caused alterations in some visceral blood volumes without concurrent changes in red cell mass. With cardiac arrest increased quantities of blood and red cell mass were observed in the lung, liver, and gastrocnemius in both splenectomized and nonsplenectomized groups. In the nonsplenectomized animals an increase of over 100 % in spleen blood volume was observed. When the two hypothermic groups were compared, differences existed only in blood volume of the lung, heart, and kidney. Hypothermia induced a pattern of blood redistribution toward visceral areas of the body. Submitted on October 14, 1960

2003 ◽  
Vol 13 (6) ◽  
pp. 544-550 ◽  
Author(s):  
Rilvani C. Gonçalves ◽  
Carlos Alberto Buschpigell ◽  
Antonio Augusto Lopes

In the Eisenmenger syndrome, indirect estimation of blood volumes may provide quite inaccurate information when seeking to define therapeutic strategies. With this in mind, we analyzed directly the red cell mass, plasma volume, and total blood volume in patients with pulmonary hypertension associated with congenital cardiac defects and erythrocytosis, comparing the results with the respective estimated volumes, and examining the changes induced by therapeutic hemodilution.Thus, we studied 17 patients with the Eisenmenger syndrome, aged from 15 to 53 years, in the basal condition, studying 12 of them both before and after hemodilution. We also investigated five individuals with minimal cardiac lesions, aged from 14 to 42 years, as controls. Red cell mass and plasma volumes were measured using [51 chromium]-sodium chromate and [131iodine]-albumin respectively. Hemodilution was planned so as to exchange 10% of the total blood volume, using 40,000 molecular weight dextran simultaneously to replace the removed volume. The mean values of the red cell mass, plasma volume and total blood volume as assessed by radionuclide techniques were 32%, 31% and 32% higher than the respective volumes as estimated using empirical mathematical formulas (p < 0.002). The measured total blood volume was also 19% higher in the patients compared with controls. Following a period of 5 days after hemodilution, we noted a 13% reduction in red cell mass (p = 0.046), and 10% reduction in total blood volume (p = 0.02), albeit with no changes in the plasma volume.We conclude that direct measurement of blood volumes is useful for proper management of these patients, and provides results that are considerably different from those obtained by empirical estimations.


2000 ◽  
Vol 26 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Ingrid Balga ◽  
Max Solenthaler ◽  
Miha Furlan
Keyword(s):  
Red Cell ◽  

2005 ◽  
Vol 129 (1) ◽  
pp. 89-91 ◽  
Author(s):  
Mordechai Lorberboym ◽  
Naomi Rahimi-Levene ◽  
Helena Lipszyc ◽  
Chun K. Kim

Abstract Context.—Polycythemia describes an increased proportion of red blood cells in the peripheral blood. In absolute polycythemia, there is increased red cell mass (RCM) with normal plasma volume, in contrast with apparent polycythemia, in which there is increased or normal RCM and decreased plasma volume. In order to deliver the appropriate treatment it is necessary to differentiate between the two. Objective.—A retrospective analysis of RCM and plasma volume data are presented, with special attention to different methods of RCM interpretation. Design.—The measurements of RCM and plasma volume in 64 patients were compared with the venous and whole-body packed cell volume, and the incidence of absolute and apparent polycythemia was determined for increasing hematocrit levels. Measurements of RCM and plasma volume were performed using chromium 51–labeled red cells and iodine 125–labeled albumin, respectively. The measured RCM of each patient was expressed as a percentage of the mean expected RCM and was also defined as being within or outside the range of 2 SD of the mean. The results were also expressed in the traditional manner of mL/kg body weight. Results.—Twenty-one patients (13 women and 8 men) had absolute polycythemia. None of them had an increased plasma volume beyond 2 SD of the mean. When expressed according to the criteria of mL/kg body weight, 17 of the 21 patients had abnormally increased RCM, but 4 patients (19%) had a normal RCM value. Twenty-eight patients had apparent polycythemia. The remaining 15 patients had normal RCM and plasma volume. Conclusions.—The measurement of RCM and plasma volume is a simple and necessary procedure in the evaluation of polycythemia. In obese patients, the expression of RCM in mL/kg body weight lacks precision, considering that adipose tissue is hypovascular. The results of RCM are best described as being within or beyond 2 SD of the mean value.


1982 ◽  
Vol 52 (5) ◽  
pp. 1186-1191 ◽  
Author(s):  
I. L. Kanstrup ◽  
B. Ekblom

The relative importance of blood volume (BV) for the maximum aerobic power (VO2 max) was evaluated in healthy subjects by sequential measurements without intervention under two conditions: 1) after hemodilution with a plasma expander, thus increasing BV but keeping red cell mass constant and lowering hemoglobin concentration [Hb], and 2) after whole blood withdrawal, which restored BV to control conditions but reduced red cell mass and [Hb] to equal conditions under 1. After BV expansion (avg 700 ml), we found an unchanged VO2 max compared with control data despite lowered [Hb]. Cardiac output (Q) was increased after BV expansion at rest and during all exercise levels (maximum 27.4 and 29.5 l . min-1, respectively). Peak stroke volume was increased from 144 to 173 ml. Arterial blood pressures were either unchanged or lowered. In contrast, after blood letting to a similar [Hb], we found a significantly reduced VO2 max. These findings indicate a significant influence of the size of the blood volume on cardiac performance. The increased Qmax is discussed in relation to preload, inotropic state, heart rate, and afterload. Plasma volume expansion causes increased preload which may explain this primary effect on the central circulation (Frank-Starling effect).


1978 ◽  
Vol 6 (4) ◽  
pp. 213-219 ◽  
Author(s):  
R. O. Robinson ◽  
P. M. Emerson ◽  
D. Howes ◽  
M. Fujimura ◽  
P. Howat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document