Measurement of blood O2 and CO2 concentrations using PO2 and PCO2 electrodes

1978 ◽  
Vol 44 (5) ◽  
pp. 818-820 ◽  
Author(s):  
A. L. Harabin ◽  
L. E. Farhi

Accurate dilution of a small blood volume with a carbon monoxide-saturated solution allows measurement of the whole blood O2 concentration as an increase in O2 tension in the solution. We have improved the method by simplifying both equipment and procedure. We also suggest an additional step in which the mixture is acidified, thereby allowing the measurement of CO2 concentration in the same solution with a CO2 electrode. The accuracy of both the O2 and CO2 determinations compares favorably with that obtained with other micromethods.

1974 ◽  
Vol 134 (1) ◽  
pp. 181b-181
Author(s):  
R. E. Willard
Keyword(s):  

2021 ◽  
Vol 13 (8) ◽  
pp. 4139
Author(s):  
Muriel Diaz ◽  
Mario Cools ◽  
Maureen Trebilcock ◽  
Beatriz Piderit-Moreno ◽  
Shady Attia

Between the ages of 6 and 18, children spend between 30 and 42 h a week at school, mostly indoors, where indoor environmental quality is usually deficient and does not favor learning. The difficulty of delivering indoor air quality (IAQ) in learning facilities is related to high occupancy rates and low interaction levels with windows. In non-industrialized countries, as in the cases presented, most classrooms have no mechanical ventilation, due to energy poverty and lack of normative requirements. This fact heavily impacts the indoor air quality and students’ learning outcomes. The aim of the paper is to identify the factors that determine acceptable CO2 concentrations. Therefore, it studies air quality in free-running and naturally ventilated primary schools in Chile, aiming to identify the impact of contextual, occupant, and building design factors, using CO2 concentration as a proxy for IAQ. The monitoring of CO2, temperature, and humidity revealed that indoor air CO2 concentration is above 1400 ppm most of the time, with peaks of 5000 ppm during the day, especially in winter. The statistical analysis indicates that CO2 is dependent on climate, seasonality, and indoor temperature, while it is independent of outside temperature in heated classrooms. The odds of having acceptable concentrations of CO2 are bigger when indoor temperatures are high, and there is a need to ventilate for cooling.


Transfusion ◽  
2011 ◽  
Vol 51 (7) ◽  
pp. 1522-1531 ◽  
Author(s):  
Anne F. Eder ◽  
Beth A. Dy ◽  
Jean M. Kennedy ◽  
Jaime Perez ◽  
Patricia Demaris ◽  
...  

Author(s):  
Ala R. Qubbaj ◽  
S. R. Gollahalli

Abstract “Venturi-cascading” technique has been developed in the Combustion Laboratory at the University of Oklahoma. The goal was to control the pollutant emissions of diffusion flames by modifying the air infusion rate into the flame. The modification was achieved by installing a cascade of venturis around the burning gas jet. The basic idea behind this technique is controlling the stoichiometry of the flame through changing the flow dynamics and rates of mixing in the combustion zone with a set of venturis surrounding the flame. A propane jet diffusion flame at burner-exit Reynolds number of 5100 was examined with a set of venturis of specific sizes and spacing arrangement. The thermal and composition fields of the baseline and venturi-cascaded flames were numerically simulated using CFD-ACE+, an advanced computational environment software package. The instantaneous chemistry model was used as the reaction model. The concentration of NO was determined through CFD-POST, a post processing utility program for CFD-ACE+. The numerical results showed that, in the near-burner, mid-flame and far-burner regions, the venturi-cascaded flame had lower temperature by an average of 13%, 19% and 17%, respectively, and lower CO2 concentration by 35%, 37%. and 32%, respectively, than the baseline flame. An opposite trend was noticed for O2 concentration; the cascaded flame has higher O2 concentration by 7%, 26% and 44%, in average values, in the near-burner, mid-flame and far-burner regions, respectively, than in the baseline case. The results also showed that, in the near-burner, mid-flame, and far-burner regions, the venturi-cascaded flame has lower NO concentrations by 89%, 70% and 70%, in average values, respectively, compared to the baseline case. The simulated results were compared with the experimental data. Good agreement was found in the near-burner region. However, the agreement was poor in the downstream regions. The numerical results substantiate the conclusion, which was drawn in the experimental part of this study, that venturi-cascading is a feasible method for controlling the pollutant emissions of a burning gas jet. In addition, the numerical results were useful to interpret the experimental measurements and understand the thermo-chemical processes involved. The results showed that the prompt-NO mechanism plays an important role besides the conventional thermal-NO mechanism.


1987 ◽  
Vol 62 (6) ◽  
pp. 2477-2484 ◽  
Author(s):  
H. Gautier ◽  
M. Bonora ◽  
S. A. Schultz ◽  
J. E. Remmers

Experiments were carried out on conscious cats to evaluate the general characteristics and modes of action of hypoxia on thermoregulation during cold stress. Intact and carotid-denervated (CD) conscious cats were exposed to ambient hypoxia (low inspired O2 fraction) or CO hypoxia in prevailing laboratory (23–25 degrees C) or cold (5–8 degrees C) environments. In the cold, both groups promptly decreased shivering and body temperature when exposed to either type of hypoxia. Small increases in CO2 concentration reinstituted shivering in both groups. At the same inspired concentration of O2, CD animals decreased shivering and body temperature more than intact cats. While this difference resulted, in part, from a lower alveolar PO2 in CD cats, a difference between intact and CD cats was apparent when the two groups were compared at the same alveolar PO2. During more prolonged hypoxia (45 min), shivering returned but did not reach normoxic levels, and body temperature tended to stabilize at a hypothermic value. Exposure to various levels of hypoxia produced graded suppression of shivering, with the result that the change in body temperature varied directly with inspired O2 concentration. Hypoxia appears to act on the central nervous system to suppress shivering and sinus nerve afferents appear to counteract this direct effect of hypoxia. In intact cats, this counteraction appears to be sufficient to maintain body temperature under hypoxic conditions at room temperature but not in the cold.


1976 ◽  
Vol 41 (6) ◽  
pp. 893-899 ◽  
Author(s):  
M. P. Hlastala ◽  
H. P. McKenna ◽  
R. L. Franada ◽  
J. C. Detter

The oxygen dissociation curve and Bohr effect were measured in normal whole blood as a function of carboxyhemoglobin concentration [HbCO]. pH was changed by varying CO2 concentration (CO2 Bohr effect) or by addition of isotonic NaOH or HCl at constant PCO2 (fixed acid Bohr effect). As [HbCO] varied through the range of 2, 25, 50, and 75%, P50 was 26.3, 18.0, 11.6, and 6.5 mmHg, respectively. CO2 Bohr effect was highest at low oxygen saturations. This effect did not change as [HbCO] was increased. However, as [HbCO] was increased from 2 to 75%, the fixed acid Bohr factor increased in magnitude from -0.20 to -0.80 at very low oxygen saturations. The effect of molecular CO2 binding (carbamino) on oxygen affinity was eliminated at high [HbCO]. These results are consistent with the initial binding of O2 or CO to thealpha-chain of hemoglobin. The results also suggest that heme-heme interaction is different for oxygen than for carbon monoxide.


Sign in / Sign up

Export Citation Format

Share Document