Ventilatory response to transient hyperoxia in head injury hyperventilation

1980 ◽  
Vol 49 (1) ◽  
pp. 52-58 ◽  
Author(s):  
A. G. Leitch ◽  
J. E. McLennan ◽  
S. Balkenhol ◽  
R. L. McLaurin ◽  
R. G. Loudon

We have measured breath-by-breath instantaneous minute ventilation (VIinst) before, during, and after the administration of 10 breaths of 100% oxygen to seven male patients with head injury hyperventilation. The patients were hypoxemic (PaO2 61.2 ± 6.3) and hypocapnic (PaCO2 26.6 ± 5.9) with a respiratory alkalosis (pH 7.53 ± 0.06) while breathing air. Following the oxygen VIinst fell on the average by 40 ± 12.7% from 16.06 ± 3.75 1.min-1 to a minimum of 9.73 ± 3.20 1.min-1 at 20.4 ± 2.9 s after the first breath of oxygen. In the majority of our hyperventilating patients, almost all of the resting hyperventilation could be abolished transiently by 100% oxygen. This fall in ventilation represents the peripheral chemoreceptor contribution to resting ventilation and is increased in the head injury patients in comparison with normal subjects breathing air or hypoxic gas mixtures, altitude-acclimatized subjects and patients who are hypoxic because of chronic bronchitis or interstitial lung disease. We suggest that the increased reflex hypoxic drive to ventilation found in our patients is secondary to their cerebral injury, resulting in a reduction of descending cortical inhibitory influences on the medullary respiratory control centers.

2002 ◽  
Vol 93 (4) ◽  
pp. 1498-1505 ◽  
Author(s):  
Nathan E. Townsend ◽  
Christopher J. Gore ◽  
Allan G. Hahn ◽  
Michael J. McKenna ◽  
Robert J. Aughey ◽  
...  

This study determined whether “living high-training low” (LHTL)-simulated altitude exposure increased the hypoxic ventilatory response (HVR) in well-trained endurance athletes. Thirty-three cyclists/triathletes were divided into three groups: 20 consecutive nights of hypoxic exposure (LHTLc, n = 12), 20 nights of intermittent hypoxic exposure (four 5-night blocks of hypoxia, each interspersed with 2 nights of normoxia, LHTLi, n = 10), or control (Con, n = 11). LHTLc and LHTLi slept 8–10 h/day overnight in normobaric hypoxia (∼2,650 m); Con slept under ambient conditions (600 m). Resting, isocapnic HVR (ΔV˙e/ΔSpO2 , whereV˙e is minute ventilation and SpO2 is blood O2 saturation) was measured in normoxia before hypoxia (Pre), after 1, 3, 10, and 15 nights of exposure (N1, N3, N10, and N15, respectively), and 2 nights after the exposure night 20 (Post). Before each HVR test, end-tidal Pco 2(Pet CO2 ) and V˙e were measured during room air breathing at rest. HVR (l · min−1 · %−1) was higher ( P < 0.05) in LHTLc than in Con at N1 (0.56 ± 0.32 vs. 0.28 ± 0.16), N3 (0.69 ± 0.30 vs. 0.36 ± 0.24), N10 (0.79 ± 0.36 vs. 0.34 ± 0.14), N15 (1.00 ± 0.38 vs. 0.36 ± 0.23), and Post (0.79 ± 0.37 vs. 0.36 ± 0.26). HVR at N15 was higher ( P < 0.05) in LHTLi (0.67 ± 0.33) than in Con and in LHTLc than in LHTLi. Pet CO2 was depressed in LHTLc and LHTLi compared with Con at all points after hypoxia ( P < 0.05). No significant differences were observed for V˙e at any point. We conclude that LHTL increases HVR in endurance athletes in a time-dependent manner and decreases Pet CO2 in normoxia, without change inV˙e. Thus endurance athletes sleeping in mild hypoxia may experience changes to the respiratory control system.


1993 ◽  
Vol 74 (1) ◽  
pp. 230-237 ◽  
Author(s):  
E. R. Swenson ◽  
J. M. Hughes

The effects of acetazolamide (ACTZ) on ventilatory control are thought to be mediated by metabolic acidosis. However, carbonic anhydrase (CA) inhibition within brain and chemoreceptors and tissue respiratory acidosis may also be important. We compared the acute effects of ACTZ (tissue respiratory acidosis and tissue CA inhibition without metabolic acidosis) on ventilation and ventilatory control with chronic ACTZ (acute effects plus metabolic acidosis). Five men were studied 1 h after 500 mg iv ACTZ or 0.9% saline (acute effects) and also after three doses of ACTZ (500 mg po every 6 h; chronic effects). Minute ventilation (VE), steady-state hypercapnic ventilatory response (HCVR), and hypoxic ventilatory response (HVR) were measured with respiratory inductance plethysmography. Resting VE was increased equally by acute and chronic ACTZ. HCVR increased with chronic ACTZ in hyperoxia and even further in hypoxia. In contrast, acute ACTZ had no effect on the HCVR slope in hyperoxia and suppressed its augmentation by hypoxia. HVR was fully suppressed by acute ACTZ but unchanged with chronic ACTZ. ACTZ also slowed the rate of full ventilatory response to CO2. These findings show that CA inhibitors affect ventilatory control in a complex fashion, not only through changes in systemic acid-base balance but also by central and peripheral chemoreceptor inhibition.


2001 ◽  
Vol 90 (5) ◽  
pp. 1729-1735 ◽  
Author(s):  
Richard Kinkead ◽  
Lydie Dupenloup ◽  
Nadine Valois ◽  
Roumiana Gulemetova

To test the hypothesis that stress alters the performance of the respiratory control system, we compared the acute (20 min) responses to moderate hypoxia and hypercapnia of rats previously subjected to immobilization stress (90 min/day) with responses of control animals. Ventilatory measurements were performed on awake rats using whole body plethysmography. Under baseline conditions, there were no differences in minute ventilation between stressed and unstressed groups. Rats previously exposed to immobilization stress had a 45% lower ventilatory response to hypercapnia (inspiratory CO2 fraction = 0.05) than controls. In contrast, stress exposure had no statistically significant effect on the ventilatory response to hypoxia (inspiratory O2 fraction = 0.12). Stress-induced attenuation of the hypercapnic response was associated with reduced tidal volume and inspiratory flow increases; the frequency and timing components of the response were not different between groups. We conclude that previous exposure to a stressful condition that does not constitute a direct challenge to respiratory homeostasis can elicit persistent (≥24 h) functional plasticity in the ventilatory control system.


1985 ◽  
Vol 59 (2) ◽  
pp. 384-391 ◽  
Author(s):  
D. P. White ◽  
J. V. Weil ◽  
C. W. Zwillich

Recent investigation suggests that both ventilation (VE) and the chemical sensitivity of the respiratory control system correlate closely with measures of metabolic rate [O2 consumption (VO2) and CO2 production (VCO2)]. However, these associations have not been carefully investigated during sleep, and what little information is available suggests a deterioration of the relationships. As a result we measured VE, ventilatory pattern, VO2, and VCO2 during sleep in 21 normal subjects (11 males and 10 females) between the ages of 21 and 77 yr. When compared with values for awake subjects, expired ventilation decreased 8.2 +/- 2.3% (SE) during sleep and was associated with a 8.5 +/- 1.6% decrement in VO2 and a 12.3 +/- 1.7% reduction in VCO2, all P less than 0.01. The decrease in ventilation was a product primarily of a significant decrease in tidal volume with little change in frequency. None of these findings were dependent on sleep stage with results in rapid-eye-movement (REM) and non-rapid-eye-movement sleep being similar. Through all sleep stages ventilation remained tightly correlated with VO2 and VCO2 both within a given individual and between subjects. Although respiratory rhythmicity was somewhat variable during REM sleep, minute ventilation continued to correlate with VO2 and VCO2. None of the parameters described above were influenced by age or gender, with male and female subjects demonstrating similar findings. Ten of the subjects demonstrated at least occasional apneas. These individuals, however, were not found to differ from those without apnea in any other measure of ventilation or metabolic rate.


2005 ◽  
Vol 98 (1) ◽  
pp. 180-185 ◽  
Author(s):  
Nausherwan K. Burki ◽  
Wheeler J. Dale ◽  
Lu-Yuan Lee

Intravenous adenosine for the treatment of supraventricular tachycardia is reported to cause bronchospasm and dyspnea and to increase ventilation in humans, but these effects have not been systematically studied. We therefore compared the effects of 10 mg of intravenous adenosine with placebo in 21 normal subjects under normoxic conditions and evaluated the temporal sequence of the effects of adenosine on ventilation, dyspnea, and heart rate. The study was repeated in 11 of these subjects during hyperoxia. In all subjects, adenosine resulted in the development of dyspnea, assessed by handgrip dynamometry, without any significant change ( P > 0.1) in lung resistance as measured by the interrupter technique. There were significant increases ( P < 0.05) in ventilation and heart rate in response to adenosine. The dyspneic response occurred slightly before the ventilatory or heart rate responses in every subject, but the timing of the dyspneic, ventilatory, and heart rate responses was not significantly different when the group data were analyzed (18.9 ± 5.8, 20.3 ± 5.5, and 19.7 ± 4.5 s, respectively). During hyperoxia, adenosine resulted in similar effects, with no significant differences in the magnitude of the ventilatory response; however, compared with the normoxic state, the intensity of the dyspneic response was significantly ( P < 0.05) reduced, whereas the heart rate response increased significantly ( P < 0.05). These data indicate that intravenous adenosine-induced dyspnea is not associated with bronchospasm in normal subjects. The time latency of the response indicates that the dyspnea is probably not a consequence of peripheral chemoreceptor or brain stem respiratory center stimulation, suggesting that it is most likely secondary to stimulation of receptors in the lungs, most likely vagal C fibers.


2006 ◽  
Vol 290 (6) ◽  
pp. R1691-R1696 ◽  
Author(s):  
N. Ramanantsoa ◽  
V. Vaubourg ◽  
S. Dauger ◽  
B. Matrot ◽  
G. Vardon ◽  
...  

Heterozygous mutations of the transcription factor PHOX2B have been found in most patients with central congenital hypoventilation syndrome, a rare disease characterized by sleep-related hypoventilation and impaired chemosensitivity to sustained hypercapnia and sustained hypoxia. PHOX2B is a master regulator of autonomic reflex pathways, including peripheral chemosensitive pathways. In the present study, we used hyperoxic tests to assess the strength of the peripheral chemoreceptor tonic drive in Phox2b+/− newborn mice. We exposed 69 wild-type and 67 mutant mice to two hyperoxic tests (12-min air followed by 3-min 100% O2) 2 days after birth. Breathing variables were measured noninvasively using whole body flow plethysmography. The initial minute ventilation decrease was larger in mutant pups than in wild-type pups: −37% (SD 13) and −25% (SD 18), respectively, P < 0.0001. Furthermore, minute ventilation remained depressed throughout O2 exposure in mutants, possibly because of their previously reported impaired CO2 chemosensitivity, whereas it returned rapidly to the normoxic level in wild-type pups. Hyperoxia considerably increased total apnea duration in mutant compared with wild-type pups ( P = 0.0001). A complementary experiment established that body temperature was not influenced by hyperoxia in either genotype group and, therefore, did not account for genotype-related differences in the hyperoxic ventilatory response. Thus partial loss of Phox2b function by heterozygosity did not diminish the tonic drive from peripheral chemoreceptors.


1991 ◽  
Vol 80 (2) ◽  
pp. 107-112 ◽  
Author(s):  
S. T. Parsons ◽  
T. L. Griffiths ◽  
J. M. L. Christie ◽  
S. T. Holgate

1. Twelve healthy young men took part in this investigation of the effect of oral theophylline and dipyridamole (two drugs known to affect the pharmacological effects of the purine nucleoside adenosine) on the respiratory response to isocapnic hypoxia. 2. The subjects underwent hypoxic rebreathing manoeuvres after 3-day pretreatments with each of the drugs for 12 h and were at least 2 h postprandial. For each in-Minute ventilation, the maximum rate of isometric inspiratory pressure development at the mouth and the ratio of inspiratory duration to total breath duration were analysed breath-by-breath and regressions of these variables upon the haemoglobin oxygen saturation were performed. 3. The slopes and intercepts of the lines describing the relationships of minute ventilation and the maximum rate of isometric inspiratory pressure development at the mouth with haemoglobin oxygen saturation were unaffected by the study drugs, and no differences in the pattern of breathing were observed. 4. We conclude that oral administration of these drugs does not result in alteration of the response of the respiratory system to progressive isocapnic hypoxia. 5. This suggests that either adenosine has no physiological role in hypoxic respiratory control as measured, or that it has opposing peripheral chemoreceptor and central respiratory centre effects which could not be distinguished by the techniques used.


1992 ◽  
Vol 73 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Y. Honda

The respiratory and circulatory activities of patients who underwent carotid body resection (CBR) more than two decades ago were reviewed. No significant ventilatory response to continuous hypoxia was observed. However, in response to stimulation of peripheral chemoreceptors, transient hyperventilation occurred before hypoxemic blood arrived at the central nervous system (single-breath test), which indicated the presence of weak peripheral chemosensitivity. Because of this slight residual peripheral chemosensitivity, which was found shortly after the operation and apparently remained more or less unchanged for greater than 20 years, peripheral chemoreceptor activity, which has been reported in other animal species, does not seem to have returned. Delayed hypoxic hyperventilation reported in dogs and cats with CBR was not observed. Hypoxia significantly depressed the ventilatory response to CO2, but the delayed ventilatory depression with time that has been demonstrated in normal subjects did not occur. In our circulatory studies, hypoxia augmented the heart rate and slightly depressed the stroke volume and total peripheral resistance in the systemic circulation but induced no appreciable changes in arterial blood pressure or cardiac output. We used these results to partition the relative contributions to the overall circulatory response of carotid body stimulation, pulmonary inflation, and other modifying influences. From these calculations, it was inferred that the carotid body reflex plays a dominant role in vascular activities whereas the pulmonary inflation reflex dominates in cardiac activities in humans.


1989 ◽  
Vol 67 (3) ◽  
pp. 1157-1163 ◽  
Author(s):  
D. Georgopoulos ◽  
S. Walker ◽  
N. R. Anthonisen

In adult humans the ventilatory response to sustained hypoxia (VRSH) is biphasic, characterized by an initial brisk increase, due to peripheral chemoreceptor (PC) stimulation, followed by a decline attributed to central depressant action of hypoxia. To study the effects of selective stimulation of PC on the ventilatory response pattern to hypoxia, the VRSH was evaluated after pretreatment with almitrine (A), a PC stimulant. Eight subjects were pretreated with A (75 mg po) or placebo (P) on 2 days in a single-blind manner. Two hours after drug administration, they breathed, in succession, room air (10 min), O2 (5 min), room air (5 min), hypoxia [25 min, arterial O2 saturation (SaO2) = 80%], O2 (5 min), and room air (5 min). End-tidal CO2 was kept constant at the normoxic base-line values. Inspiratory minute ventilation (VI) and breathing patterns were measured over the last 2 min of each period and during minutes 3–5 of hypoxia, and nadirs in VI were assessed just before and after O2 exposure. Independent of the day, the VRSH was biphasic. With P and A pretreatment, early hypoxia increased VI 4.6 +/- 1 and 14.2 +/- 1 (SE) l/min, respectively, from values obtained during the preceding room-air period. On A day the hypoxic ventilatory decline was significantly larger than that on P day, and on both days the decline was a constant fraction of the acute hypoxic response.(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 63 (5) ◽  
pp. 1884-1889 ◽  
Author(s):  
M. Vizek ◽  
C. K. Pickett ◽  
J. V. Weil

There is considerable interindividual variation in ventilatory response to hypoxia in humans but the mechanism remains unknown. To examine the potential contribution of variable peripheral chemorecptor function to variation in hypoxic ventilatory response (HVR), we compared the peripheral chemoreceptor and ventilatory response to hypoxia in 51 anesthetized cats. We found large interindividual differences in HVR spanning a sevenfold range. In 23 cats studied on two separate days, ventilatory measurements were correlated (r = 0.54, P less than 0.01), suggesting stable interindividual differences. Measurements during wakefulness and in anesthesia in nine cats showed that although anesthesia lowered the absolute HVR it had no influence on the range or the rank of the magnitude of the response of individuals in the group. We observed a positive correlation between ventilatory and carotid sinus nerve (CSN) responses to hypoxia measured during anesthesia in 51 cats (r = 0.63, P less than 0.001). To assess the translation of peripheral chemoreceptor activity into expiratory minute ventilation (VE) we used an index relating the increase of VE to the increase of CSN activity for a given hypoxic stimulus (delta VE/delta CSN). Comparison of this index for cats with lowest (n = 5, HVR A = 7.0 +/- 0.8) and cats with highest (n = 5, HVR A = 53.2 +/- 4.9) ventilatory responses showed similar efficiency of central translation (0.72 +/- 0.06 and 0.70 +/- 0.08, respectively). These results indicate that interindividual variation in HVR is associated with comparable variation in hypoxic sensitivity of carotid bodies. Thus differences in peripheral chemoreceptor sensitivity may contribute to interindividual variability of HVR.


Sign in / Sign up

Export Citation Format

Share Document