Mechanisms of interaction between oxygen and granulocytes in hyperoxic lung injury

1985 ◽  
Vol 58 (4) ◽  
pp. 1326-1330 ◽  
Author(s):  
B. P. Krieger ◽  
W. H. Loomis ◽  
G. T. Czer ◽  
R. G. Spragg

Hyperoxia and infused granulocytes act synergistically in producing a nonhydrostatic high-permeability lung edema in the isolated perfused rabbit lung within 4 h, which is substantially greater than that seen with hyperoxia alone. We hypothesized that the interaction between hyperoxia and granulocytes was principally due to a direct effect of hyperoxia on the lung itself. Isolated perfused rabbit lungs that were preexposed to 2 h of hyperoxia (95% O2–5% CO2) prior to the infusion of unstimulated granulocytes (under normoxic conditions) developed significant nonhydrostatic lung edema (P = 0.008) within 2 h when compared with lungs that were preexposed to normoxia (15% O2–5% CO2) prior to granulocyte perfusion. The edema in the hyperoxic-preexposed lungs was accompanied by significant increases in bronchoalveolar lavage (BAL) protein, BAL granulocytes, BAL thromboxane and prostacyclin levels, perfusate chemotactic activity, and lung lipid peroxidation. These findings suggest that the synergistic interaction between hyperoxia and granulocytes in producing acute lung injury involves a primary effect of hyperoxia on the lung itself.

1994 ◽  
Vol 76 (3) ◽  
pp. 1232-1241 ◽  
Author(s):  
C. L. Bryan ◽  
A. J. Patefield ◽  
D. Cohen ◽  
J. L. Nielsen ◽  
B. Emanuel ◽  
...  

Single-lung transplantation after 3 h of hypothermic storage produces bilateral lung injury [pulmonary reimplantation response (PRR)]. We hypothesized that glutathione (GSH) hypothermic storage would protect both lungs from PRR for extended preservation times and that differences in injury and protection would be realized between the graft and the nontransplanted lung. Mongrel dogs underwent left single-lung autotransplantation after preservation for 5–6 h in Euro-Collins (EC) solution, EC plus exogenous GSH (EC+GSH), or Viaspan (VIA) at 4 degrees C. Lung injury was measured in both lungs after 1 h of reperfusion. EC dogs demonstrated significant increases in lung edema, lipid peroxidation, and alveolar neutrophil recruitment in the lung graft and to a less extent in the nontransplanted right lung compared with control dogs (P < 0.05). Edema, lipid peroxidation, and alveolar neutrophils were significantly reduced in both lungs from EC+GSH and VIA dogs compared with lungs from EC dogs (P < 0.05). An increase in large-pore permeability was measured in the lung graft from EC dogs compared with all other lungs. Bronchoalveolar lavage fluid lactate dehydrogenase and total protein concentrations were elevated in both lungs from all three groups of tranplanted dogs compared with those of control dogs (P < 0.05). These data suggest that GSH-containing solutions attenuate the PRR after 6 h of ischemic hypothermic storage but that the protection is incomplete. Mechanisms of injury affecting the lung graft during the PRR appear to differ from those affecting the nontransplanted lung.


2003 ◽  
Vol 29 (10) ◽  
pp. 1790-1797 ◽  
Author(s):  
Henning D. Stubbe ◽  
Martin Westphal ◽  
Hugo Van Aken ◽  
Christoph Hucklenbruch ◽  
Stefan Lauer ◽  
...  

2001 ◽  
Vol 280 (3) ◽  
pp. L512-L518 ◽  
Author(s):  
Nicholas W. Lukacs ◽  
M. Michael Glovsky ◽  
Peter A. Ward

Bronchoconstriction responses in the airway are caused by multiple insults and are the hallmark symptom in asthma. In an acute lung injury model in mice, IgG immune complex deposition elicited severe airway hyperreactivity that peaked by 1 h, was maintained at 4 h, and was resolved by 24 h. The depletion of complement with cobra venom factor (CVF) markedly reduced the hyperreactive airway responses, suggesting that complement played an important role in the response. Blockade of C5a with specific antisera also significantly reduced airway hyperreactivity in this acute lung model. Complement depletion by CVF treatment significantly reduced tumor necrosis factor and histamine levels in bronchoalveolar lavage fluids, correlating with reductions in airway hyperreactivity. To further examine the role of specific complement requirement, we initiated the immune complex response in C5-sufficient and C5-deficient congenic animals. The airway hyperreactivity response was partially reduced in the C5-deficient mice. Complement depletion with CVF attenuated airway hyperreactivity in the C5-sufficient mice but had a lesser effect on the airway hyperreactive response and histamine release in bronchoalveolar lavage fluids in C5-deficient mice. These data indicate that acute lung injury in mice after deposition of IgG immune complexes induced airway hyperreactivity that is C5 and C5a dependent.


2006 ◽  
Vol 104 (3) ◽  
pp. 511-517 ◽  
Author(s):  
Jörg Reutershan ◽  
Daniel Chang ◽  
John K. Hayes ◽  
Klaus Ley

Background The concept of antiinflammatory effects of volatile anesthetics is well established in vitro and in some organ systems. Their protective role in lung injury, however, remains to be elucidated. The authors hypothesized that in the lung, isoflurane pretreatment may attenuate neutrophil infiltration and reduce endotoxin-induced injury. Methods Male C57Bl/6 mice were exposed to aerosolized lipopolysaccharide. Neutrophil recruitment into the pulmonary vasculature and migration into the different lung compartments (interstitium and alveolar air space) were determined by flow cytometry. Capillary protein leakage, formation of lung edema, and concentration of the chemokines keratinocyte-derived chemokine (CXCL1) and macrophage inflammatory protein 2 (CXCL2/3) in bronchoalveolar lavage were compared in mice with or without isoflurane treatment (1.4% inspired for 30 min) at different times before and after endotoxin exposure. Results Endotoxin inhalation induced significant neutrophil migration into all lung compartments. Isoflurane pretreatment attenuated both neutrophil recruitment into lung interstitium and alveolar space when given 1 or 12 h before or 1 h after lipopolysaccharide but not at 4, 6, or 24 h before endotoxin exposure. Isoflurane pretreatment 1 or 12 h before lipopolysaccharide also reduced protein leakage and pulmonary edema. Production of CXCL1 and CXCL2/3 in the bronchoalveolar lavage was reduced when isoflurane was given 1 h but not 12 h before lipopolysaccharide, suggesting different mechanisms for early and late protection. Conclusion Isoflurane pretreatment reduces acute lung injury when given 1 or 12 h before an endotoxin challenge or within the first hour of an already established inflammation.


2020 ◽  
Author(s):  
Xue-wei Pan ◽  
Li-xuan Xue ◽  
Qian-liu Zhou ◽  
Jia-zhi Zhang ◽  
Yu-jie Dai ◽  
...  

Abstract Background: Sepsis is a severe disorder leading to a clinically critical syndrome of multiple organ dysfunction syndrome. Most patients with sepsis will be associated with acute lung injury (ALI), which is an independent risk factors of organ failure and death in patients with sepsis at the same time. YiQiFuMai Lyophilized Injection (YQFM) is a modern traditional Chinese prescription preparation, which could ameliorate ALI induced by lipopolysaccharide (LPS) or fine particulate matter. The current study aimed to investigate the effect of YQFM on sepsis-induced ALI and the underlying mechanism.Methods: Male C57BL/6J mice were treated with cecal ligation and puncture (CLP) after tail intravenous injected with YQFM (1, 2 and 4 g/kg). The measurements of lung edema, evans blue leakage, myeloperoxidase content, inflammatory cells in bronchoalveolar lavage fluid, histopathological assay and expression of associated proteins were performed at 18 h after CLP.Results: The results illustrated that YQFM inhibited pulmonary edema and inflammatory response, thus ameliorated ALI in sepsis mice. Furthermore, the expression of TLR4 and phosphorylated Src was down-regulated, and the expression of p120-catenin and VE-cadherin was restored by YQFM administration.Conclusion: Our study suggested the therapeutic potential of YQFM on treating sepsis-induced ALI via regulating TLR4/Src/VE-cadherin/p120-catenin signaling pathway.


1989 ◽  
Vol 67 (6) ◽  
pp. 2316-2322 ◽  
Author(s):  
J. A. Cooper ◽  
W. W. Merrill

Glutathione is a tripeptide important in a number of diverse cellular functions including enzymatic reactions involved in prostaglandin endoperoxide metabolism. We have previously reported that cyclophosphamide administration to rats results in acute lung injury manifested by increased bronchoalveolar lavage albumin concentrations. In the current study we examine whether cyclophosphamide treatment affects pulmonary glutathione stores or bronchoalveolar endoperoxide metabolic product levels and whether these effects may be related to acute lung injury caused by the drug. We show that cyclophosphamide treatment causes a dose-dependent reduction in pulmonary glutathione stores 4 h after drug administration. In addition, acute lung injury as the result of cyclophosphamide can be abrogated by coadministration of oxothiazolidine carboxylate, an intracellular cysteine delivery system that also reverses pulmonary glutathione depletion induced by cyclophosphamide in our study. Finally, cyclophosphamide treatment reduces prostaglandin E2 concentrations in bronchoalveolar lavage and alveolar macrophage culture supernatant in a dose-dependent fashion and increases bronchoalveolar thromboxane concentrations in low dose-treated animals. These effects are reversed to a variable degree by coadministration of oxothiazolidine carboxylate. Our study suggests in vivo pulmonary arachidonic acid metabolism and cyclophosphamide-induced acute lung injury are modulated by cellular glutathione stores. These findings may have important implications for the treatment of acute lung injury.


Perfusion ◽  
2003 ◽  
Vol 18 (2) ◽  
pp. 107-113 ◽  
Author(s):  
Wolfgang Eichler ◽  
J F Matthias Bechtel ◽  
Jan Schumacher ◽  
Johanna A Wermelt ◽  
Karl-Friedrich Klotz ◽  
...  

Postoperative acute lung injury (ALI) contributes to the morbidity and mortality following cardiopulmonary bypass (CPB). To determine whether the presence of matrix metalloproteinases (MMPs) is associated with ALI after CPB, MMP-2 and MMP-9 activities in bronchoalveolar lavage fluid (BALF) were compared with parameters indicating impaired gas exchange. In a prospective study, 17 minipigs were subjected to CPB for 60 min. Before and at five and 180 min after CPB, MMP-2 and MMP-9 were assayed in BALF and the arterial-alveolar gradient of oxygen tension (AaDO2), the pulmonary capillary wedge pressure (PCWP) and the water content of lung tissue samples (Wt) were evaluated and compared with baseline values. MMP-2 and MMP-9 increased significantly 5 minutes (2.1- and 6.2-fold, respectively) and 180 minutes (3.4- and 14.3-fold, respectively) post-CPB. AaDO2 and Wt, but not PCWP, increased significantly 180 minutes after CPB and only AaDO2, but not PCWP or Wt, was significantly correlated with MMP-2 (r/0.66, p/0.006) and MMP-9 (r/0.62, p/0.01). In conclusion, high levels of MMP-2 and MMP-9 in the pulmonary compartment are associated with ALI after CPB.


Sign in / Sign up

Export Citation Format

Share Document