Effect of rib cage and abdominal restriction on total respiratory resistance and reactance

1986 ◽  
Vol 61 (5) ◽  
pp. 1736-1740 ◽  
Author(s):  
J. A. van Noord ◽  
M. Demedts ◽  
J. Clement ◽  
M. Cauberghs ◽  
K. P. Van de Woestijne

In 14 healthy male subjects we studied the effects of rib cage and abdominal strapping on lung volumes, airway resistance (Raw), and total respiratory resistance (Rrs) and reactance (Xrs). Rib cage, as well as abdominal, strapping caused a significant decrease in vital capacity (respectively, -36 and -34%), total lung capacity (TLC) (-31 and -27%), functional residual capacity (FRC) (-28 and -28%), and expiratory reserve volume (-40 and -48%) and an increase in specific airway conductance (+24 and +30%) and in maximal expiratory flow at 50% of control TLC (+47 and +42%). The decrease of residual volume (RV) was significant (-12%) with rib cage strapping only. Abdominal strapping resulted in a minor overall increase in Rrs, whereas rib cage strapping produced a more marked increase at low frequencies; thus a frequency dependence of Rrs was induced. A similar pattern, but with lower absolute values, of Rrs was obtained by thoracic strapping when the subject was breathing at control FRC. Xrs was decreased, especially at low frequencies, with abdominal strapping and even more with thoracic strapping; thus the resonant frequency of the respiratory system was shifted toward higher frequencies. Partitioning Rrs and Xrs into resistance and reactance of lungs and chest wall demonstrated that the different effects of chest wall and abdominal strapping on Rrs and Xrs reflect changes mainly of chest wall mechanics.

1991 ◽  
Vol 70 (6) ◽  
pp. 2611-2618 ◽  
Author(s):  
T. Mutoh ◽  
W. J. Lamm ◽  
L. J. Embree ◽  
J. Hildebrandt ◽  
R. K. Albert

Abdominal distension (AD) occurs in pregnancy and is also commonly seen in patients with ascites from various causes. Because the abdomen forms part of the "chest wall," the purpose of this study was to clarify the effects of AD on ventilatory mechanics. Airway pressure, four (vertical) regional pleural pressures, and abdominal pressure were measured in five anesthetized, paralyzed, and ventilated upright pigs. The effects of AD on the lung and chest wall were studied by inflating a liquid-filled balloon placed in the abdominal cavity. Respiratory system, chest wall, and lung pressure-volume (PV) relationships were measured on deflation from total lung capacity to residual volume, as well as in the tidal breathing range, before and 15 min after abdominal pressure was raised. Increasing abdominal pressure from 3 to 15 cmH2O decreased total lung capacity and functional residual capacity by approximately 40% and shifted the respiratory system and chest wall PV curves downward and to the right. Much smaller downward shifts in lung deflation curves were seen, with no change in the transdiaphragmatic PV relationship. All regional pleural pressures increased (became less negative) and, in the dependent region, approached 0 cmH2O at functional residual capacity. Tidal compliances of the respiratory system, chest wall, and lung were decreased 43, 42, and 48%, respectively. AD markedly alters respiratory system mechanics primarily by "stiffening" the diaphragm/abdomen part of the chest wall and secondarily by restricting lung expansion, thus shifting the lung PV curve as seen after chest strapping. The less negative pleural pressures in the dependent lung regions suggest that nonuniformities of ventilation could also be accentuated and gas exchange impaired by AD.


1978 ◽  
Vol 45 (2) ◽  
pp. 255-260 ◽  
Author(s):  
Y. L. Lai ◽  
J. Hildebrandt

Functional residual capacity (FRC) and pressure-volume (PV) curves of the lung, chest wall, and total respiratory system were studied in 15 anesthetized rats, weighing 307 +/- 10 (SE) g. Pleural pressure was estimated from the esophageal pressure measured with a water-filled catheter. The FRC determined by body plethysmograph was slightly and significantly larger than FRC determined from saline displacement of excised lungs. The difference may be accounted for by O2 uptake by lung tissue, escape of CO2 through the pleura, and abdominal gas. Paralysis in the prone position did not affect FRC, and abdominal gas content contributed only slightly to the FRC measured by body plethysmograph. Values of various pulmonary parameters (mean +/- SE) were as follows: residual volume, 1.26 +/- 0.13 ml; FRC, 2.51 +/- 0.20 ml; total lung capacity, 12.23 +/- 0.55 ml; compliance of the lung, 0.90 +/- 0.06 ml/cmH2O; chest wall compliance, 1.50 +/- 0.11 ml/cmH2O; and respiratory system compliance, 0.57 +/- 0.03 ml/cmH2O. The lung PV curve did not show a consistent change after the chest was opened.


1986 ◽  
Vol 60 (4) ◽  
pp. 1198-1202 ◽  
Author(s):  
F. D. McCool ◽  
B. M. Pichurko ◽  
A. S. Slutsky ◽  
M. Sarkarati ◽  
A. Rossier ◽  
...  

Previous studies suggest that abdominal binding may affect the interaction of the rib cage and the diaphragm over the tidal range of breathing in quadriplegia. To determine whether abdominal binding influences rib cage motion over the entire range of inspiratory capacity, we used spirometry and the helium-dilution technique to measure functional residual capacity (FRC), inspiratory capacity, and total lung capacity (TLC) in eight quadriplegic and five normal subjects in supine, tilted (37 degrees), and seated positions. Combined data in all three positions indicated that, with abdominal binding, FRC and TLC decreased in normal subjects [delta FRC = -0.33 + 0.151 (SD) P less than 0.01); delta TLC = -0.16 + 0.121, P less than 0.05]. In quadriplegia there was also a reduction in FRC with binding (delta FRC = -0.32 + 0.101, P less than 0.001). However, TLC increased in quadriplegia (delta TLC = 0.07 + 0.061, P less than 0.025). In an additional six quadriplegic and five normal subjects, we used magnetometers to define the influences of abdominal binding on rib cage dimensions and TLC. In quadriplegia, rib cage dimensions were increased at TLC with abdominal binding, whereas there was no change in normals. Our data suggest that this inspiratory effect of abdominal binding on augmenting rib cage volume in quadriplegia is greater than the effect of impeding diaphragm descent, and thus abdominal binding produces a net increase in TLC in quadriplegia.


1979 ◽  
Vol 47 (4) ◽  
pp. 851-857 ◽  
Author(s):  
D. B. Michels ◽  
P. J. Friedman ◽  
J. B. West

Human lung shape was measured during zero gravity (0 G) to decide whether the normal vertical regional differences in ventilation are due directly to distortion of the elastic lung by its own weight, or instead, due indirectly to the effect of gravity on the shape of the rib cage and diaphragm. This was important because we previously established that weightlessness virtually abolishes the normal topographical inequality of ventilation (J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 987–998, 1978). Chest radiographs were made after 10 s of a weightless flight trajectory aboard a NASA-Ames Research Center Learjet in both posterior-anterior and left lateral projections on five seated volunteers at residual volume, functional residual capacity, and total lung capacity. Lung shape was assessed by measuring lung heights and widths in upper, middle, and lower lung regions. We found no significant differences between any of the normal gravity (1 G) and o G measurements, although there was a slight tendency for the lung to become shorter and wider at o G (mean changes generally less than 3% or about 0.5 cm). By contrast, Grassino et al. (J. Appl. Physiol. 39: 997–1003, 1975) found no change in the vertical distribution of ventilation after voluntarily changing lung dimensions by more than 1 cm by moving the abdomen in or out. We conclude that gravity produces the topographical distribution of ventilation in the upright human lung by distorting the elastic lung tissue within the chest rather than by altering the shape of the rib cage and diaphragm.


1998 ◽  
Vol 85 (2) ◽  
pp. 451-458 ◽  
Author(s):  
Jennifer Beck ◽  
Christer Sinderby ◽  
Lars Lindström ◽  
Alex Grassino

The purpose of this study was to evaluate the influence of velocity of shortening on the relationship between diaphragm activation and pressure generation in humans. This was achieved by relating the root mean square (RMS) of the diaphragm electromyogram to the transdiaphragmatic pressure (Pdi) generated during dynamic contractions at different inspiratory flow rates. Five healthy subjects inspired from functional residual capacity to total lung capacity at different flow rates while reproducing identical Pdi and chest wall configuration profiles. To change the inspiratory flow rate, subjects performed the inspirations while breathing across two different inspiratory resistances (10 and 100 cmH2O ⋅ l−1 ⋅ s), at mouth pressure targets of −10, −20, −40, and −60 cmH2O. The diaphragm electromyogram was recorded and analyzed with control of signal contamination and electrode positioning. RMS values obtained for inspirations with identical Pdi and chest wall configuration profiles were compared at the same percentage of inspiratory duration. At inspiratory flows ranging between 0.1 and 1.4 l/s, there was no difference in the RMS for the inspirations from functional residual capacity to total lung capacity when Pdi and chest wall configuration profiles were reproduced ( n = 4). At higher inspiratory flow rates, subjects were not able to reproduce their chest wall displacements and adopted different recruitment patterns. In conclusion, there was no evidence for increased demand of diaphragm activation when healthy subjects breathe with similar chest wall configuration and Pdi profiles, at increasing flow rates up to 1.4 l/s.


1985 ◽  
Vol 58 (4) ◽  
pp. 1055-1060
Author(s):  
W. S. Krell ◽  
J. R. Rodarte

Lobar functional residual capacity-to-total lung capacity ratios (FRC/TLC) and strains in five supine anesthetized dogs were determined from volumes and side lengths of tetrahedra formed by multiple intraparenchymal markers whose positions were determined roentgenographically. Strain is related to fractional changes in length of elements in a Cartesian coordinate system and was used to describe parenchymal distortion. Volumes and strain patterns were compared in three states: intact dogs, after transection of forelimb structures to relieve traction on the chest wall, and in dogs' excised lungs. Removing traction (NT) decreased the plethysmographically determined FRC and the upper-to-lower lobe ratio (UL/LL) for FRC/TLC. The ratio in the NT state was more like the ratio in the excised lungs (UL/LL approximately equal to 1) than in the intact dog (UL/LL greater than 1). Strain patterns were similar between the intact and the NT states, indicating no lobar shape change at FRC between these two states. Strain in the excised lungs differed greatly from strains in the intact and NT states. We conclude that forelimb traction alters volume distribution between lobes and that lung-chest wall interactions are important in determining volume and strain patterns.


1990 ◽  
Vol 68 (5) ◽  
pp. 1970-1978 ◽  
Author(s):  
S. S. Margulies ◽  
J. R. Rodarte

The shape of the passive chest wall of six anesthetized dogs was determined at total lung capacity (TLC) and functional residual capacity (FRC) in the prone and supine body positions by use of volumetric-computed tomographic images. The transverse cross-sectional areas of the rib cage, mediastinum, and diaphragm were calculated every 1.6 mm along the length of the thorax. The changes in the volume and the axial distribution of transverse area of the three chest wall components with lung volume and body position were evaluated. The decrease of the transverse area within the rib cage between TLC and FRC, as a fraction of the area at TLC, was uniform from the apex of the thorax to the base. The volume of the mediastinum increased slightly between TLC and FRC (14% of its TLC volume supine and 20% prone), squeezing the lung between it and the rib cage. In the transverse plane, the heart was positioned in the midthorax and moved little between TLC and FRC. The shape, position, and displacement of the diaphragm were described by contour plots. In both postures, the diaphragm was flatter at FRC than at TLC, because of larger displacements in the dorsal than in the ventral region of the diaphragm. Rotation from the prone to supine body position produced a lever motion of the diaphragm, displacing the dorsal portion of the diaphragm cephalad and the ventral portion caudad. In five of the six dogs, bilateral isovolume pneumothorax was induced in the supine body position while intrathoracic gas volume was held constant.(ABSTRACT TRUNCATED AT 250 WORDS)


1980 ◽  
Vol 58 (3) ◽  
pp. 249-253 ◽  
Author(s):  
T. Higenbottam ◽  
T. J. H. Clark

1. Airway resistance was measured close to functional residual capacity before and after a full inhalation of total lung capacity, as well as before and after a full exhalation to residual volume. 2. The effects of these volume manoeuvres upon airway resistance (and associated lung volume) were determined in four resting normal male subjects and in six normal men during experimentally induced bronchoconstriction after breathing an air/histamine mist from a Wright's nebulizer. 3. In four men the duration of the effect of a full inhalation upon airway resistance after induced bronchoconstriction was assessed separately. 4. Neither a full inhalation nor a full exhalation altered airway resistance under normal conditions. However, a full inhalation reduced airway resistance in the presence of bronchoconstriction and this effect lasted for a period of 45 s. Even with bronchoconstriction, a full exhalation had no effect on airway resistance. 5. Account must therefore be taken of the potential reduction in airway resistance which may result from a full inhalation, particularly when indirect measurements of airway function which involve a full inhalation, such as forced spirometry, are used to assess airway obstruction.


1996 ◽  
Vol 81 (5) ◽  
pp. 1929-1940 ◽  
Author(s):  
Aladin M. Boriek ◽  
Joseph R. Rodarte ◽  
Susan S. Margulies

Boriek, Aladin M., Joseph R. Rodarte, and Susan S. Margulies. Zone of apposition in the passive diaphragm of the dog. J. Appl. Physiol. 81(5): 1929–1940, 1996.—We determined the regional area of the diaphragmatic zone of apposition (ZAP) as well as the regional craniocaudal extent of the ZAP (ZAPht) of the passive diaphragm in six paralyzed anesthetized beagle dogs (8–12 kg) at residual lung volume (RV), functional residual capacity (FRC), FRC + 0.25 and FRC + 0.5 inspiratory capacity, and total lung capacity (TLC) in prone and supine postures. To identify the caudal boundary of the ZAP, 17 lead markers (1 mm) were sutured to the abdominal side of the costal and crural diaphragms around the diaphragm insertion on the chest wall. Two weeks later, the dogs’ caudal thoraces were scanned by the use of the dynamic spatial reconstructor (DSR), a prototype fast volumetric X-ray computer tomographic scanner, developed at the Mayo Clinic. The three-dimensional spatial coordinates of the markers were identified (±1.4 mm), and the cranial boundary of the ZAP was determined from 30–40 1.4-mm-thick sagittal and coronal slices in each DSR image. We interpolated the DSR data to find the position of the cranial and caudal boundaries of the ZAP every 5° around the thorax and computed the distribution of regional variation of area of the ZAP and ZAPht as well as the total area of ZAP. The ZAPht and area of ZAP increased as lung volume decreased and were largest near the lateral extremes of the rib cage. We measured the surface area of the rib cage cephaled to the ZAP ( A L) in both postures in another six beagle dogs (12–16 kg) of similar stature, scanned previously in the DSR. We estimated the entire rib cage surface area ( A rc =  A ZAP + A L). The A ZAP as a percentage of A rc increased more than threefold as lung volume decreased from TLC to RV, from ∼9 to 29% of A rc.


1991 ◽  
Vol 71 (4) ◽  
pp. 1581-1588 ◽  
Author(s):  
J. L. Pean ◽  
C. J. Chuong ◽  
M. Ramanathan ◽  
R. L. Johnson

To follow regional deformation of the diaphragm in dogs, radiopaque markers were implanted under surgical anesthesia into different anatomic regions of the muscle in triangular arrays (approximately 1 cm to a side). After recovery from surgery, changes in area and shape of the triangles were followed with biplane cinefluorography during quiet breathing and during inspiratory efforts against an occluded airway (Mueller maneuvers). From changes in shape of the triangles during contraction, area changes were decomposed into a major direction and magnitude of shortening (Eg1) and a minor length change (Eg2) perpendicular to Eg1, both expressed as a fraction of initial length at end expiration. With the use of these techniques, systematic differences in regional area change were observed in different parts of the diaphragm during inspiratory efforts at different lung volumes. Regional area always decreased during contraction in the crural and midcostal zones of apposition to the rib cage. Area decreased less and often increased during inspiratory efforts in the costal dome near the central tendon and in the costal region near its rib cage insertion. Differences in regional area change were not due to differences in the Eg1 in different parts of the diaphragm but were a consequence of differences in widening of the muscle along Eg2 perpendicular to the direction of Eg1. As lung volume was passively increased above functional residual capacity, regional area decreased in all parts of the diaphragm except in the costal regions near rib cage insertion, where area increased.


Sign in / Sign up

Export Citation Format

Share Document