Increase in pulmonary capillary permeability in dogs exposed to 100% O2

1988 ◽  
Vol 65 (3) ◽  
pp. 1140-1146 ◽  
Author(s):  
F. Royer ◽  
D. J. Martin ◽  
G. Benchetrit ◽  
F. A. Grimbert

Changes in pulmonary capillary filtration induced by hyperoxia were investigated in 15 dogs. After 12 h of normobaric hyperoxic exposure, animals were anesthetized and artificially ventilated with 100% O2. A pulmonary lymphatic vessel was cannulated, and lymph flow and protein content were measured together with pulmonary and systemic hemodynamics. An increase in pulmonary capillary filtration was found when compared with reference data (normoxic dogs in similar conditions) gathered from available literature: lymph flow increased from 21.8 +/- 13.4 to 125.2 +/- 131.6 microliter/min, and the lymph-to-plasma protein concentration ratio increased from 0.67 +/- 0.08 to 0.78 +/- 0.08. To characterize the mechanisms involved, left atrial pressure was increased in two stages (approximately 10 and approximately 25 mmHg). The results clearly indicated an increase in pulmonary capillary permeability as evidenced by a decrease of the minimal estimate of the protein reflection coefficient from 0.62 +/- 0.05 to 0.42 +/- 0.05.

1985 ◽  
Vol 248 (6) ◽  
pp. G670-G675
Author(s):  
J. S. Lee

Lymph flow (JL), lymph protein concentration (CL), and protein output (JP) from the main intestinal lymph duct were determined. The basal JL from the mesenteric pedicle alone was the same as that from the mesenteric pedicle attached with a segment of the nonabsorbing intestine, indicating that the basal JL does not originate from the intestine but is totally from the region of the mesenteric pedicle. The basal CL was 3.5-3.8 g/100 ml. When the intestine was absorbing water, JL increased and CL decreased, but JP increased above the basal JP in the initial 20 min of water absorption and then decreased progressively with time. Furthermore, it was estimated that CL in the "excess lymph" (formed during water absorption) was 1.4 +/- 0.2 g/100 ml in the initial 10 min of water absorption and was zero or nearly so in the later periods. From this and other evidence, it is concluded that under various conditions without net water absorption rat small intestine does not produce lymph and that during water absorption there is no significant increase in capillary permeability or capillary filtration. Therefore, the excess lymph could be mostly derived from the fluid absorbed from the lumen of the intestine.


1979 ◽  
Vol 46 (1) ◽  
pp. 146-151 ◽  
Author(s):  
T. Foy ◽  
J. Marion ◽  
K. L. Brigham ◽  
T. R. Harris

Pseudomonas bacteremia in sheep causes a prolonged increase in lung vascular permeability to protein. Isoproterenol and aminophylline could effect lung fluid balance after Pseudomonas by reducing vascular pressures or by blocking release of permeability mediators. We measured vascular pressures, lung lymph flow, and lymph and plasma protein concentrations in unanesthetized sheep under baseline conditions and during steady-state increased permeability after Pseudomonas. Pseudomonas caused pulmonary vascular pressures to rise and lung lymph flow to increase fivefold, but lymph/plasma protein concentration did not change. Pulmonary vascular pressures and lung lymph flow decreased during intravenous infusion of isoproterenol and aminophylline. The decrease in lymph flow after isoproterenol and isoproterenol plus aminophylline was linearly related to the decrease in microvascular pressure (r = 0.71). Lymph/plasma total protein concentration ratios and lymph clearance of proteins with molecular radii 36--96 A remained high during isoproterenol and aminophylline. These drugs can substantially reduce transvascular filtration primarily because they reduce lung vascular pressures.


1983 ◽  
Vol 55 (5) ◽  
pp. 1514-1522 ◽  
Author(s):  
G. C. Kramer ◽  
B. A. Harms ◽  
B. I. Bodai ◽  
E. M. Renkin ◽  
R. H. Demling

We compared the effects of a sustained decrease in plasma oncotic pressure on lung fluid balance with those of an increase in vascular pressure in six unanesthetized sheep. Initial plasma protein concentration of 58.0 +/- 2.2 (SE) mg/ml was quickly reduced to 34.0 +/- 1.4 mg/ml via plasmapheresis and held at this value for 24 h. Red cells were returned with lactated Ringer solution infused at a rate adjusted to maintain central venous pressure; cardiac output and pulmonary vascular pressures also remained at base line. Steady-state lymph flows increased from a base-line value of 8.8 +/- 3.2 to 20.1 +/- 5.6 ml/h, while the lymph-to-plasma protein concentration ratio ( [L/P] ) decreased from 0.65 +/- 0.03 to 0.44 +/- 0.04. Decreased lymph protein resulted in reestablishment of base-line plasma-to-lymph oncotic gradient. The increased lymph flow was not the result of increased filtration forces, since all vascular pressures and the oncotic gradient were unchanged; nor was it due entirely to increased surface area since [L/P] was decreased. The decrease in plasma oncotic pressure, delta pi P, was twice as effective at increasing lymph flow (1.66 ml X h-1 X mmHg-1, delta pi P) as an equivalent increase in microvascular pressure, delta PC, at normal plasma protein concentration (0.82 ml X h-1 X mmHg-1, delta PC). Elevation of microvascular pressure during hypoproteinemia had a greater effect on lymph flow (1.44 ml X h-1 X mmHg-1, delta PC) than at normal plasma protein concentration.(ABSTRACT TRUNCATED AT 250 WORDS)


1986 ◽  
Vol 61 (3) ◽  
pp. 1139-1148 ◽  
Author(s):  
T. A. Hazinski ◽  
R. D. Bland ◽  
T. N. Hansen ◽  
E. G. Sedin ◽  
R. B. Goldberg

To study the influence of plasma protein concentration on fluid balance in the newborn lung, we measured pulmonary arterial and left atrial pressures, lung lymph flow, and concentrations of protein in lymph and plasma of eight lambs, 2–3 wk old, before and after we reduced their plasma protein concentration from 5.8 +/- 0.3 to 3.6 +/- 0.6 g/dl. Each lamb underwent two studies, interrupted by a 3-day period in which we drained protein-rich systemic lymph through a thoracic duct fistula and replaced fluid losses with feedings of a protein-free solution of electrolytes and glucose. Each study consisted of a 2-h control period followed by 4 h of increased lung microvascular pressure produced by inflation of a balloon in the left atrium. Body weight and vascular pressures did not differ significantly during the two studies, but lung lymph flow increased from 2.6 +/- 0.1 ml/h during normoproteinemia to 4.1 +/- 0.1 ml/h during hypoproteinemia. During development of hypoproteinemia, the average difference in protein osmotic pressure between plasma and lymph decreased by 1.6 +/- 2 Torr at normal left atrial pressure and by 4.9 +/- 2.2 Torr at elevated left atrial pressure. When applied to the Starling equation governing microvascular fluid balance, these changes in liquid driving pressure were sufficient to account for the observed increases in lung fluid filtration; reduction of plasma protein concentration did not cause a statistically significant change in calculated filtration coefficient. Protein loss did not influence net protein clearance from the lungs nor did it accentuate the increase in lymph flow associated with left atrial pressure elevation.(ABSTRACT TRUNCATED AT 250 WORDS)


1980 ◽  
Vol 239 (6) ◽  
pp. G516-G523
Author(s):  
D. N. Granger ◽  
P. R. Kvietys ◽  
N. A. Mortillaro ◽  
A. E. Taylor

The direct effects of luminal distension pressure on intestinal transcapillary fluid exchange were studied in isolated autoperfused cat ileum preparations. Intestinal lymph flow, lymphatic pressure, lymph-to-plasma protein concentration ratio (L/P), blood flow, and perfusion pressures were allowed to reach a steady state at different luminal distension pressures (0–40 mmHg). Luminal distension was induced using a nonabsorbable silicone solution, thereby eliminating an influence of net water absorption. At a venous outflow pressure of 0 mmHg, lymph flow and lymphatic pressure increased, whereas blood flow and L/P decreased as luminal pressure was increased. The relationship between lymph flow, blood flow, and venous pressure was acquired at luminal pressures of 0 and 20 mmHg. When luminal pressure was 0, lymph flow increased and blood flow decreased progressively with venous pressure elevation; however, when luminal pressure was 20 mmHg, lymph flow and blood flow were unaffected until pressure exceeded 20 mmHg. The results of this study indicate that luminal pressure elevation enhances transcapillary fluid exchange and imposes a “waterfall” effect on the intestinal vasculature.


1989 ◽  
Vol 257 (6) ◽  
pp. H2025-H2032 ◽  
Author(s):  
M. B. Wolf ◽  
L. P. Porter ◽  
P. D. Watson

We investigated the effects of elevated venous pressure, Pv, (up to 140 mmHg) on the solvent drag reflection coefficient, sigma f, for protein and on the capillary filtration coefficient, CFC, in the isolated cat hindlimb perfused at constant flow. The perfusate contained 30% cat plasma and the remainder was a dialyzed albumin-electrolyte mixture. Cat red cells were added to a hematocrit of approximately 2%. sigma f was measured from the changes in hematocrit and plasma protein concentration (Integral-Mass Balance method) resulting from the fluid filtration caused by the Pv elevation. CFC was measured from the slope of the limb weight recording 2-4 min after the Pv elevation. sigma f decreased linearly from 0.807 (Pv less than 50 mmHg) to approximately 0.2 at 140 mmHg. CFC increased linearly from 0.0086 ml.min-1.mmHg-1.100 g-1 to about 0.04 over the same pressure range. A weight-independent filtration coefficient calculated from the change in hematocrit and a measurement of the initial perfusate volume gave comparable results, except at the very highest of pressures, where this coefficient was sometimes 20-40% less than CFC. Successive sigma f determinations at Pv at about 40 mmHg did not return to control after an initial measurement in which Pv was approximately 110 mmHg. Pore-theory analysis of the data suggests that the elevated Pv causes large pores to open as opposed to the stretching of small pores. Also, these large pores may remain open for a period of hours.


1980 ◽  
Vol 239 (1) ◽  
pp. H96-H100
Author(s):  
R. E. Drake ◽  
J. C. Gabel

We estimated the pulmonary capillary membrane filtration coefficient (Kf) and the maximum capillary pressure (PCcritical) at which the lung could maintain a constant weight in 1) 5 control experiments in anesthetized open-chested dogs, 2) 7 experiments in which the dogs were given 3.6-8.3 microgram . kg-1 . min-1 of histamine phosphate, and 3) in 6 experiments after 75-100 mg/kg of alloxan. In additional experiments, pulmonary lymph flow (QL) and protein concentration (CL) were measured during the infusion of histamine and alloxan. After histamine, Kf averaged 0.045 +/- 0,008 ml . min-1mmHg-1 (SE) and PCcritical was 22.1 +/- 1.1 mmHg. These values were not significantly different from the control Kf and PCcritical (0.036 +/- 0.006 and 22.5 +/- 2.3, respectively). After alloxan, Kf (1.43 +/- 0.69) was larger and PCcritical (12.4 +/- 1.3) was significantly less than control (P less than 0.05). Histamine caused no significant change in QL or CL; however, both were increased after alloxan. These results show that Kf, PCcritical, QL, and CL are all changed by an increase in capillary membrane permeability caused by alloxan. Because none of these factors as significantly affected by histamine, dog lung capillary membrane permeability may not be affected by histamine.


1980 ◽  
Vol 239 (4) ◽  
pp. G300-G305 ◽  
Author(s):  
P. D. Richardson ◽  
D. N. Granger ◽  
D. Mailman ◽  
P. R. Kvietys

Blood flow, lymph flow, lymph protein concentration (CL), lymph oncotic pressure, plasma protein concentration (CP), and plasma oncotic pressure were determined under steady-state conditions at venous pressures of 0, 10, 20, 30, and 40 mmHg in autoperfused segments of dog colon. Venous pressure elevation increased colonic vascular resistance, lymph flow, lymphatic protein flux, and the transcapillary oncotic pressure gradient, whereas the lymph-to-plasma protein concentration ratio (CL/CP) declined. The osmotic reflection coefficient (sigma d) was estimated using sigma d = 1-CL/CP when CL/CP is filtration independent (high lymph flows). For total protein sigma d = 0.85 +/- 0.02. Values of sigma d for plasma protein fractions with molecular radii ranging between 37 and 120 A increased as molecular radius increased. The results of this study suggest that 1) colonic capillaries selectively restrict macromolecules on the basis of molecular size, and 2) an increased lymph flow and transcapillary oncotic pressure gradient may play an important role in preventing interstitial edema subsequent to venous pressure elevation in the dog colon.


The lymphatics of the ovaries of pregnant and non-pregnant ewes were outlined either by direct or retrograde injection of indian ink or Berlin blue and the distribution of these vessels within the ovary was determined. In active ovaries the mature follicles and corpora lutea contained a profuse network of lymphatics. In inactive ovaries the lymphatics were very small and poorly developed. Lymph was collected from the ovaries of conscious ewes for periods of several days. The flow of lymph from ovaries with corpora lutea averaged 4.15 ml./h; a maximum rate of flow of 14.9 ml./h was recorded in one ewe. The protein concentration of ovarian lymph was 73 % of the plasma concentration. When 131 I labelled albumin was injected intravenously into ewes it entered the ovarian lymph very rapidly and the specific activities of albumin in the plasma and lymph equilibrated within 10 to 20 min of injection. The structure of the ovarian blood capillaries provided an explanation for the very high rate of lymph flow and protein leakage in the ovary. The endothelium of the blood capillaries was discontinuous with gaps up to 1 to 2 μm in diameter through which red cells, indian ink particles and ferritin passed into the interstitial spaces. Where the basement membrane of the capillaries was deficient over gaps the surfaces of the luteal cells came into direct contact with the circulating plasma, and occasionally cytoplasmic extensions from the luteal cells projected into the lumen of the blood capillaries. The lymphatics which were associated with many of the blood capillaries had open intercellular junctions and material could enter these vessels readily from the interstitial spaces. The blood capillaries in the ovarian stroma and those around immature follicles appeared less permeable than the capillaries of the corpus luteum. The association between the development of the corpus and an increase in lymph production in the ovary suggests the possibility that the changes in capillary permeability may be related to the synthesis and secretion of steroid hormones.


1982 ◽  
Vol 53 (1) ◽  
pp. 96-104 ◽  
Author(s):  
M. A. Matthay ◽  
C. C. Landolt ◽  
N. C. Staub

We determined the clearance rates of 50 ml of isosmotic fluids from the lungs of anesthetized, ventilated sheep with lung lymph fistulas. The removal of the liquid volume followed a monoexponential process over 4 h for both Ringer lactate [half time (t 1/2) = 3 h] and autologous serum (t 1/2 = 6 h). Lymph flow did not increase with Ringer lactate, indicating that the alveolar fluid was cleared via the circulation. With serum, however, lymph flow increased 40%. In both groups the lymph-to-plasma protein concentration ratio fell slightly. Using protein tracers in the alveolar instillate, we found that less than 2% of the protein entered the lymph and plasma. Almost all of the protein remained in the air spaces and was concentrated in proportion to the amount of liquid volume that was cleared. Clearance of liquid volume from alveoli to interstitium could be due to subatmospheric interstitial fluid pressure or to active metabolic processes that cause small molecules to leave the alveolar fluid, or both. The results of the serum experiments tend to favor a metabolic process, but passive mechanisms are possible. The difference in lymph flow response between the two fluids must be due to the protein in the alveolar fluid. We believe Ringer lactate dilutes the alveolar wall interstitial protein concentration thereby decreasing local filtration, whereas serum concentrates alveolar wall interstitial fluids proteins thereby increasing local filtration.


Sign in / Sign up

Export Citation Format

Share Document