Central nervous system control of airway tone in guinea pigs: the role of histamine

1988 ◽  
Vol 65 (5) ◽  
pp. 2024-2029 ◽  
Author(s):  
P. J. Mauser ◽  
N. H. Edelman ◽  
R. W. Chapman

The central nervous system (CNS) plays an important role in the reflex control of bronchomotor tone, but the relevant neurotransmitters and neuromodulators have not been identified. In this study we have investigated the effect of histamine. Anesthetized male guinea pigs were prepared with a chronically implanted intracerebroventricular (icv) cannula and instrumented for the measurement of pulmonary resistance (RL), dynamic lung compliance (Cdyn), tidal volume (VT), respiratory rate (f), blood pressure (BP), and heart rate (HR). Administration of histamine (2-30 micrograms) icv caused a significant (P less than 0.05) reduction of Cdyn with no change in RL, VT, and f. At a dose of 100 micrograms icv, histamine caused an increase in RL (202 +/- 78%), a reduction of Cdyn (77 +/- 9%), an increase in f (181 +/- 64%), and a reduction of VT (53 +/- 18%). There were no changes in BP and HR after 100 micrograms of icv histamine. In contrast, intravenous administration of histamine (0.1-2 micrograms/kg) caused a dose-dependent decrease in Cdyn and increase in RL that was associated with tachypnea at each bronchoconstrictor dose. Intravenous histamine (2 micrograms/kg) produced a fall in BP and an increase in HR. The bronchoconstrictor responses to icv histamine were completely blocked by vagotomy and significantly reduced by atropine (0.1 mg/kg iv), whereas vagotomy and atropine did not block the bronchospasm due to intravenous histamine. Additional studies indicated that the pulmonary responses due to icv histamine (100 micrograms) were blocked by pretreatment with the H1-antagonist chlorpheniramine (1 and 10 micrograms, icv). These data indicate that histamine may serve a CNS neurotransmitter function in reflex bronchoconstriction in guinea pigs.

1979 ◽  
Vol 57 (9) ◽  
pp. 987-997 ◽  
Author(s):  
Ken Lukowiak

In older Aplysia, the central nervous system (CNS) (abdominal ganglion) exerts suppressive and facilitatory control over the peripheral nervous system (PNS) which initially mediates the gill withdrawal reflex and its subsequent habituation evoked by tactile stimulation of the siphon. In young animals, both the suppressive and facilitatory CNS control were found to be absent. In older animals, removal of branchial nerve (Br) input to the gill resulted in a significantly reduced reflex latency and, with ctenidial (Ct) and siphon (Sn) nerves intact, a significantly increased reflex amplitude and an inability of the reflex to habituate with repeated siphon stimulation. In young animals, removal of Br had no effect on reflex latency and with Ct and Sn intact, the reflex amplitude latency was not increased and the reflex habituated. Older animals can easily discriminate between different intensity stimuli applied to the siphon as evidenced by differences in reflex amplitude, rates of habituation, and evoked neural activity. On the other hand, young animals cannot discriminate well between different stimulus intensities. The lack of CNS control in young animals was found to be due to incompletely developed neural processes within the abdominal ganglion and not the PNS. The lack of CNS control in young Aplysia results in gill reflex behaviours being less adaptive in light of changing stimulus conditions, but may be of positive survival value in that the young will not habituate as easily. The fact that CNS control is present in older animals strengthens the idea that in any analysis of the underlying neural mechanisms of habituation the entire integrated CNS–PNS must be taken into account.


1929 ◽  
Vol 50 (3) ◽  
pp. 365-370 ◽  
Author(s):  
Richard E. Shope ◽  
Paul A. Lewis

The experimental data collected during this study of a transmissible type of paralysis developing in tuberculous guinea pigs indicate the condition to be a true tuberculous meningitis. We have been able to rule out the possibility that it is due to a non-tuberculous infection of the central nervous system caused by Roemer's virus, or by an atypical herpes virus, or by some bacterium other than the tubercle bacillus. Roemer's virus and herpes could be eliminated from consideration when Berkefeld N filtrates of infectious brain emulsions proved incapable of reproducing the disease. Furthermore, rabbits could be infected as they cannot with Roemer's virus, and the disease elicited in rabbits bears no semblance to herpes encephalitis. No organism other than the tubercle bacillus could be obtained on culturing brain or brain emulsions from experimental cases, and no others were seen in examining fresh smear preparations from the central nervous system. In a modified Noguchi medium a tubercle bacillus possessing atypical staining properties was obtained. This organism was capable of producing the typical paralytic disease when injected intracerebrally into guinea pigs, and also generalized tuberculosis in animals inoculated subcutaneously with it. Typical tuberde bacilli were readily demonstrable in sections of the meninges from animals with the disease, and culture of pieces of brain on Dorset's egg medium usually yielded a growth of tubercle bacilli. Only in the first of the experimental passages, on the other hand, was it possible to demonstrate acid-fast organisms in fresh smear preparations from the central nervous system. This fact and the attributes of the atypically staining organisms encountered in the cultures in Noguchi media will be considered more fully in a subsequent publication. In view of the much discussed question of the filtrability of the tubercle bacillus our observations concerning the failure of this organism to pass a Berkefeld N filter are of interest. No animal in our series inoculated intracerebrally with brain emulsion from either a "spontaneous" or experimental case of tuberculous meningitis failed to develop meningitis, and that rather acutely, while no animal in our series injected with a Berkefeld filtrate of brain emulsion has developed tuberculous meningitis or any other form of tuberculosis. In connection with this observation it must be recalled that the organism was atypical in respect to its staining qualities at least.


SIMULATION ◽  
2003 ◽  
Vol 79 (11) ◽  
pp. 648-669 ◽  
Author(s):  
Angela Nebot ◽  
Francisco Mugica ◽  
François E. Cellier ◽  
Montserrat Vallverdú

2000 ◽  
Vol 203 (6) ◽  
pp. 1071-1080 ◽  
Author(s):  
J.M. Koene ◽  
R.F. Jansen ◽  
A. Ter Maat ◽  
R. Chase

We have investigated the role of the right mesocerebrum in the expression of mating behaviour in the garden snail Helix aspersa. Using an in vivo stimulation and recording technique, we provide evidence for both sensory and motor functions in the mesocerebral neuronal population. Some neurones were specifically sensitive to tactile stimuli delivered to the skin on the superior tentacles and around the genital pore. Electrical stimulation of the right mesocerebrum evoked genital eversion and, in combination with tactile stimulation, dart-shooting and penial eversion. Genital eversions were also elicited by injections of APGWamide. During courtship, one recorded unit increased its activity only in correlation with penial eversion, while six other units increased their activity only during dart-shooting. Three additional units increased their activity during both types of behaviour. In addition, most of the recorded units showed increased neuronal activity during times of contact with a partner. Comparison of our results with available data from other molluscs leads us to conclude that the right anteromedial region of the cerebral ganglion is an evolutionarily conserved region of the gastropod brain specialised for the control of male mating behaviour. It is striking to find such functional conservation in the central nervous system of phylogenetically distant gastropods given the large differences in behaviour during mating.


Sign in / Sign up

Export Citation Format

Share Document