mitochondrial population
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 12)

H-INDEX

20
(FIVE YEARS 3)

Author(s):  
Rachel Y. Diao ◽  
Asa B Gustafsson

Selective autophagy of the mitochondria, known as mitophagy, is a major mitochondrial quality control pathway in the heart that is involved in removing unwanted or dysfunctional mitochondria from the cell. Baseline mitophagy is critical for maintaining the fitness of the mitochondrial population by continuous turnover of aged and less functional mitochondria. Mitophagy is also critical in adapting to stress associated with mitochondrial damage or dysfunction. The removal of damaged mitochondria prevents ROS-mediated damaged to proteins and DNA and suppresses activation of inflammation and cell death. Impairments in mitophagy are associated with the pathogenesis of many diseases, including cancers, inflammatory diseases, neurodegeneration, and cardiovascular disease. Mitophagy is a highly regulated and complex process that requires the coordination of labeling dysfunctional mitochondria for degradation while simultaneously promoting de novo autophagosome biogenesis adjacent to the cargo. In this review, we provide an update on our current understanding of these steps in mitophagy induction and discuss the physiological and pathophysiological consequences of altered mitophagy in the heart.


2021 ◽  
Author(s):  
Kristen M Laricchia ◽  
Nicole J Lake ◽  
Nicholas A Watts ◽  
Megan Shand ◽  
Andrea Haessly ◽  
...  

Databases of allele frequency are extremely helpful for evaluating clinical variants of unknown significance; however, until now, genetic databases such as the Genome Aggregation Database (gnomAD) have ignored the mitochondrial genome (mtDNA). Here we present a pipeline to call mtDNA variants that addresses three technical challenges: (i) detecting homoplasmic and heteroplasmic variants, present respectively in all or a fraction of mtDNA molecules, (ii) circular mtDNA genome, and (iii) misalignment of nuclear sequences of mitochondrial origin (NUMTs). We observed that mtDNA copy number per cell varied across gnomAD cohorts and influenced the fraction of NUMT-derived false-positive variant calls, which can account for the majority of putative heteroplasmies. To avoid false positives, we excluded samples prone to NUMT misalignment (few mtDNA copies per cell), cell line artifacts (many mtDNA copies per cell), or with contamination and we reported variants with heteroplasmy greater than 10%. We applied this pipeline to 56,434 whole genome sequences in the gnomAD v3.1 database that includes individuals of European (58%), African (25%), Latino (10%), and Asian (5%) ancestry. Our gnomAD v3.1 release contains population frequencies for 10,850 unique mtDNA variants at more than half of all mtDNA bases. Importantly, we report frequencies within each nuclear ancestral population and mitochondrial haplogroup. Homoplasmic variants account for most variant calls (98%) and unique variants (85%). We observed that 1/250 individuals carry a pathogenic mtDNA variant with heteroplasmy above 10%. These mitochondrial population allele frequencies are publicly available at gnomad.broadinstitute.org and will aid in diagnostic interpretation and research studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alena Sucháčková Bartoňová ◽  
Martin Konvička ◽  
Jana Marešová ◽  
Martin Wiemers ◽  
Nikolai Ignatev ◽  
...  

AbstractThe bacterium Wolbachia infects many insect species and spreads by diverse vertical and horizontal means. As co-inherited organisms, these bacteria often cause problems in mitochondrial phylogeny inference. The phylogenetic relationships of many closely related Palaearctic blue butterflies (Lepidoptera: Lycaenidae: Polyommatinae) are ambiguous. We considered the patterns of Wolbachia infection and mitochondrial diversity in two systems: Aricia agestis/Aricia artaxerxes and the Pseudophilotes baton species complex. We sampled butterflies across their distribution ranges and sequenced one butterfly mitochondrial gene and two Wolbachia genes. Both butterfly systems had uninfected and infected populations, and harboured several Wolbachia strains. Wolbachia was highly prevalent in A. artaxerxes and the host’s mitochondrial structure was shallow, in contrast to A. agestis. Similar bacterial alleles infected both Aricia species from nearby sites, pointing to a possible horizontal transfer. Mitochondrial history of the P. baton species complex mirrored its Wolbachia infection and not the taxonomical division. Pseudophilotes baton and P. vicrama formed a hybrid zone in Europe. Wolbachia could obscure mitochondrial history, but knowledge on the infection helps us to understand the observed patterns. Testing for Wolbachia should be routine in mitochondrial DNA studies.


2020 ◽  
Vol 48 (2) ◽  
pp. 631-644 ◽  
Author(s):  
Rajdeep Das ◽  
Oishee Chakrabarti

The cellular mitochondrial population undergoes repeated cycles of fission and fusion to maintain its integrity, as well as overall cellular homeostasis. While equilibrium usually exists between the fission–fusion dynamics, their rates are influenced by organellar and cellular metabolic and pathogenic conditions. Under conditions of cellular stress, there is a disruption of this fission and fusion balance and mitochondria undergo either increased fusion, forming a hyperfused meshwork or excessive fission to counteract stress and remove damaged mitochondria via mitophagy. While some previous reports suggest that hyperfusion is initiated to ameliorate cellular stress, recent studies show its negative impact on cellular health in disease conditions. The exact mechanism of mitochondrial hyperfusion and its role in maintaining cellular health and homeostasis, however, remain unclear. In this review, we aim to highlight the different aspects of mitochondrial hyperfusion in either promoting or mitigating stress and also its role in immunity and diseases.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Farzaneh Shakeri ◽  
Vanessa Bianconi ◽  
Matteo Pirro ◽  
Amirhossein Sahebkar

Mitophagy is a protected cellular process that is essential for autophagic removal of damaged mitochondria and for preservation of a healthy mitochondrial population. In the last years, a particular interest has been devoted in studying the effects of natural compounds on mitophagy. Different natural compounds may modulate mitochondrial oxidative phosphorylation, the production of mitochondrial reactive oxygen species, the expression of mitophagy- and autophagy-related genes, and the activities of transcription factors which regulate the expression of mitochondrial proteins, thereby controlling mitochondrial damage and mitophagy. Remarkably, since mitochondrial function has a crucial role in the pathogenesis of various diseases (e.g., cancer, atherosclerosis, Duchenne muscular dystrophy, diabetes complications, Alzheimer’s disease, and hepatic steatosis), these effects might have important therapeutic implications. In this review, preclinical studies investigating the role of different natural compounds in the modulation of mitophagy will be discussed.


2020 ◽  
Vol 21 (4) ◽  
pp. 1359 ◽  
Author(s):  
Ruizhu Lin ◽  
Risto Kerkelä

Aging is a major risk factor for cardiovascular diseases (CVDs), the major cause of death worldwide. Cardiac myocytes, which hold the most abundant mitochondrial population, are terminally differentiated cells with diminished regenerative capacity in the adult. Cardiomyocyte mitochondrial dysfunction is a characteristic feature of the aging heart and one out of the nine features of cellular aging. Aging and cardiac pathologies are also associated with increased senescence in the heart. However, the cause and consequences of cardiac senescence during aging or in cardiac pathologies are mostly unrecognized. Further, despite recent advancement in anti-senescence therapy, the targeted cell type and the effect on cardiac structure and function have been largely overlooked. The unique cellular composition of the heart, and especially the functional properties of cardiomyocytes, need to be considered when designing therapeutics to target cardiac aging. Here we review recent findings regarding key factors regulating cell senescence, mitochondrial health as well as cardiomyocyte rejuvenation.


Author(s):  
David C. Chan

The dynamic properties of mitochondria—including their fusion, fission, and degradation—are critical for their optimal function in energy generation. The interplay of fusion and fission confers widespread benefits on mitochondria, including efficient transport, increased homogenization of the mitochondrial population, and efficient oxidative phosphorylation. These benefits arise through control of morphology, content exchange, equitable inheritance of mitochondria, maintenance of high-quality mitochondrial DNA, and segregation of damaged mitochondria for degradation. The key components of the machinery mediating mitochondrial fusion and fission belong to the dynamin family of GTPases that utilize GTP hydrolysis to drive mechanical work on biological membranes. Defects in this machinery cause a range of diseases that especially affect the nervous system. In addition, several common diseases, including neurodegenerative diseases and cancer, strongly affect mitochondrial dynamics.


Nutrients ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2900 ◽  
Author(s):  
Gaetana Napolitano ◽  
Gianluca Fasciolo ◽  
Sergio Di Meo ◽  
Paola Venditti

Mitochondria are both the main sites of production and the main target of reactive oxygen species (ROS). This can lead to mitochondrial dysfunction with harmful consequences for the cells and the whole organism, resulting in metabolic and neurodegenerative disorders such as type 2 diabetes, obesity, dementia, and aging. To protect themselves from ROS, mitochondria are equipped with an efficient antioxidant system, which includes low-molecular-mass molecules and enzymes able to scavenge ROS or repair the oxidative damage. In the mitochondrial membranes, a major role is played by the lipid-soluble antioxidant vitamin E, which reacts with the peroxyl radicals faster than the molecules of polyunsaturated fatty acids, and in doing so, protects membranes from excessive oxidative damage. In the present review, we summarize the available data concerning the capacity of vitamin E supplementation to protect mitochondria from oxidative damage in hyperthyroidism, a condition that leads to increased mitochondrial ROS production and oxidative damage. Vitamin E supplementation to hyperthyroid animals limits the thyroid hormone-induced increases in mitochondrial ROS and oxidative damage. Moreover, it prevents the reduction of the high functionality components of the mitochondrial population induced by hyperthyroidism, thus preserving cell function.


2019 ◽  
Author(s):  
Katarzyna Goljanek-Whysall ◽  
Ana Soriano-Arroquia ◽  
Rachel McCormick ◽  
Caroline Chinda ◽  
Brian McDonagh

AbstractOne of the key mechanisms underlying skeletal muscle functional deterioration during ageing is disrupted mitochondrial dynamics. Regulation of mitochondrial dynamics is essential to maintain a healthy mitochondrial population and prevent the accumulation of damaged mitochondria, however the regulatory mechanisms are poorly understood. We demonstrated loss of mitochondrial content and disrupted mitochondrial dynamics in muscle during ageing concomitant with dysregulation of miR-181a target interactions. Using functional approaches and mitoQc assay, we have established that miR-181a is an endogenous regulator of mitochondrial dynamics through concerted regulation of Park2, p62/SQSTM1 and DJ-1 in vitro. Downregulation of miR-181a with age was associated with an accumulation of autophagy-related proteins and abnormal mitochondria. Restoring miR-181a levels in old mice prevented accumulation of p62, DJ-1 and PARK2, improved mitochondrial quality and muscle function. These results provide physiological evidence for the potential of microRNA-based interventions for age-related muscle atrophy and of wider significance for diseases with disrupted mitochondrial dynamics.


Sign in / Sign up

Export Citation Format

Share Document