Intensity and duration of exercise effects on skeletal muscle cAMP, phosphorylase, and glycogen

1989 ◽  
Vol 66 (1) ◽  
pp. 190-194 ◽  
Author(s):  
A. H. Goldfarb ◽  
J. F. Bruno ◽  
P. J. Buckenmeyer

To gain further insights into the mechanisms regulating skeletal muscle glycogenolysis during exercise, glycogen, phosphorylase, and adenosine 3',5'-cyclic monophosphate (cAMP) were determined in fast-twitch white (FTW) and fast-twitch red (FTR) muscle from groups of rats that ran for 0, 5, 10, 15, or 30 min at either 15 or 30 m/min. Glycogen degradation demonstrated an intensity and duration response in both fiber types. cAMP increased in both fiber types by 5 min and remained elevated at all times measured. FTW muscle cAMP levels were independent of both intensity and duration of exercise. FTR muscle cAMP levels were higher from 10 to 30 min at the 30-m/min intensity compared with the 15-m/min intensity. The ratio of the activity of phosphorylase in the presence of 2 mM AMP X 100 (phosphorylase a%) remained elevated at 20–22% independent of intensity and duration in FTW muscle; however, phosphorylase a% demonstrated an intensity and duration effect in FTR muscle. Glycogenolytic rates decreased with time, even though both cAMP and phosphorylase a% remained elevated in both fiber types. These data suggest that cAMP and phosphorylase a activation can be maintained during exercise in skeletal muscle but indicate a dissociation of these factors from glycogenolysis.

1983 ◽  
Vol 245 (2) ◽  
pp. H265-H275 ◽  
Author(s):  
B. G. Mackie ◽  
R. L. Terjung

Blood flow to fast-twitch red (FTR), fast-twitch white (FTW), and slow-twitch red (STR) muscle fiber sections of the gastrocnemius-plantaris-soleus muscle group was determined using 15 +/- 3-microns microspheres during in situ stimulation in pentobarbital-anesthetized rats. Steady-state blood flows were assessed during the 10th min of contraction using twitch (0.1, 0.5, 1, 3, and 5 Hz) and tetanic (7.5, 15, 30, 60, and 120/min) stimulation conditions. In addition, an earlier blood flow determination was begun at 3 min (twitch series) or at 30 s (tetanic series) of stimulation. Blood flow was highest in the FTR (220-240 ml X min-1 X 100 g-1), intermediate in the STR (140), and lowest in the FTW (70-80) section during tetanic contraction conditions estimated to coincide with the peak aerobic function of each fiber type. These blood flows are fairly proportional to the differences in oxidative capacity among fiber types. Further, their absolute values are similar to those predicted from the relationship between blood flow and oxidative capacity found by others for dog and cat muscles. During low-frequency contraction conditions, initial blood flow to the FTR and STR sections were excessively high and not dependent on contraction frequency. However, blood flows subsequently decreased to values in keeping with the relative energy demands. In contrast, FTW muscle did not exhibit this time-dependent relative hyperemia. Thus, besides the obvious quantitative differences between skeletal muscle fiber types, there are qualitative differences in blood flow response during contractions. Our findings establish that, based on fiber type composition, a heterogeneity in blood flow distribution can occur within a whole muscle during contraction.


1985 ◽  
Vol 249 (4) ◽  
pp. E360-E365 ◽  
Author(s):  
E. G. Noble ◽  
C. D. Ianuzzo

Muscle homogenates representing slow-twitch oxidative, fast-twitch oxidative-glycolytic, fast-twitch glycolytic, and mixed fiber types were prepared from normal, diabetic, and insulin-treated diabetic rats. Diabetes was induced by injection of 80 mg . kg-1 of streptozotocin. The activities of citrate synthase, succinate dehydrogenase, and 3-hydroxyacyl-CoA dehydrogenase were employed as markers of oxidative potential, whereas phosphorylase, hexokinase, and phosphofructokinase activities were used as an indication of glycolytic capacity. Diabetes was associated with a general decrement in the activity of oxidative marker enzymes for all fiber types except the fast-twitch glycolytic fiber. In contrast, the fast-twitch glycolytic fibers demonstrated the greatest decline in glycolytic enzymatic activity. Insulin-treated animals, either trained or untrained, exhibited enzyme activities similar to their normal counterparts. Exercise training of diabetic rats mimicked the effect of insulin treatment and caused a near normalization of the activity of the marker enzymes. These findings suggest that the enzymatic potential of all skeletal muscle fiber types of diabetic rats may be normalized by exercise training even in the absence of significant amounts of insulin.


2020 ◽  
Author(s):  
Gist H. Farr ◽  
Bingsi Li ◽  
Maurizio Risolino ◽  
Nathan M. Johnson ◽  
Zizhen Yao ◽  
...  

SummaryVertebrate skeletal muscles are composed of both slow-twitch and fast-twitch fiber types. How the differentiation of distinct fiber types is activated during embryogenesis is not well characterized. Skeletal muscle differentiation is initiated by the activity of the myogenic basic helix-loop-helix (bHLH) transcription factors Myf5, Myod1, Myf6, and Myog. Myod1 functions as a muscle master regulatory factor and directly activates muscle differentiation genes, including those specific to both slow and fast muscle fibers. Our previous studies showed that Pbx TALE-class homeodomain proteins bind with Myod1 on the promoter of the zebrafish fast muscle gene mylpfa and are required for proper activation of mylpfa expression and the fast-twitch muscle-specific differentiation program in zebrafish embryos. Pbx proteins have also been shown to bind regulatory regions of muscle differentiation genes in mammalian muscle cells in culture. Here, we use new zebrafish mutant strains to confirm the essential roles of zebrafish Pbx factors in embryonic fast muscle differentiation. Furthermore, we examine the requirements for Pbx genes in mouse embryonic skeletal muscle differentiation, an area that has not been investigated in the mammalian embryo. Removing Pbx1 function from skeletal muscle in Myf5Cre/+;Pbx1fl/fl mouse embryos has minor effects on embryonic muscle development. However, concomitantly deleting Pbx2 function in Myf5Cre/+;Pbx1fl/fl;Pbx2-/- mouse embryos causes delayed activation and reduced expression of fast muscle differentiation genes. In the mouse, Pbx1/Pbx2-dependent fast muscle genes closely match those that have been previously shown to be dependent on murine Six1 and Six4. This work establishes evolutionarily conserved requirements for Pbx factors in embryonic fast muscle differentiation. Our studies are revealing how Pbx homeodomain proteins help direct specific cellular differentiation pathways.


1993 ◽  
Vol 265 (1) ◽  
pp. C171-C177 ◽  
Author(s):  
R. L. Ruff ◽  
D. Whittlesey

The voltage dependence and amplitude of Na+ currents (INa) were studied with the loose-patch voltage-clamp technique on 19 fast-twitch human intercostal skeletal muscle fibers at the endplate border and > 200 microns from the endplate (extrajunctional). The fibers were histochemically classified as fast-twitch oxidative-glycolytic (type IIa, n = 9) or fast-twitch glycolytic (type IIb, n = 10). The voltage dependence of activation and fast and slow inactivation of INa were similar for membrane patches recorded on the endplate border and on extrajunctional membrane for both fiber types. INa was about fivefold larger on the endplate border compared with extrajunctional membrane for both fiber types. Type IIb fibers had larger values of INa and manifest fast inactivation of INa at more negative potentials than type IIa fibers. The difference between type IIa and IIb fibers may enable IIb fibers to operate at higher firing frequencies for brief periods.


1975 ◽  
Vol 229 (2) ◽  
pp. 394-397 ◽  
Author(s):  
J Borensztajn ◽  
MS Rone ◽  
SP Babirak ◽  
JA McGarr ◽  
LB Oscai

Lipoprotein lipase activity was measured in the three skeletal muscle fiber types of untrained rats and in those of rats subjected to a 12-wk program of treadmill running. Lipoprotein lipase activity in slow-twitch red fibers was approximately 14- to 20-fold higher (P less than 0.001) than that in fast-twitch white and approximately 2-fold higher (P less than 0.001) than that in fast-twitch red fibers in the untrained animals. These results suggest that, in sedentary animals, mainly slow-twitch red and fast-twitch red fibers are capable of taking up plasma triglyceride fatty acids. Regularly performed endurance exercise resulted in significant increase (2- to 4.5-fold) in lipoprotein lipase activity in the three muscle fiber types examined. The increase in lipoprotein lipase activity in response to treadmill running suggests that exercise increases the capacity of these fibers to take up and oxidize plasma triglyceride fatty acids. Cardiac muscle did not undergo an exercise-induced increase in the levels of activity of lipoprotein lipase similar to that seen in skeletal muscle.


1980 ◽  
Vol 239 (1) ◽  
pp. E88-E95 ◽  
Author(s):  
K. E. Flaim ◽  
M. E. Copenhaver ◽  
L. S. Jefferson

The effects of acute (2-day) and long-term (7-day) diabetes on rates of protein synthesis, peptide-chain initiation, and levels of RNA were examined in rat skeletal muscles that are known to have differing proportions of the three fiber types: fast-twitch white, fast-twitch red, and slow-twitch red. Short-term diabetes resulted in a 15% reduction in the level of RNA in all the muscles studied and an impairment in peptide-chain initiation in muscles with mixed fast-twitch fibers. In contrast, the soleus, a skeletal muscle with high proportions of slow-twitch red fibers, showed little impairment in initiation. When the muscles were perfused as a part of the hemicorpus preparation, addition of insulin to the medium caused a rapid reversal of the block in initiation in mixed fast-twitch muscles but had no effect in the soleus. The possible role of fatty acids in accounting for these differences is discussed. Long-term diabetes caused no further reduction in RNA, but resulted in the development of an additional impairment to protein synthesis that also affected the soleus and that was not corrected by perfusion with insulin. The defect resulting from long-term diabetes may involve elongation or termination reactions.


2000 ◽  
Vol 278 (2) ◽  
pp. E234-E243 ◽  
Author(s):  
Iñaki Azpiazu ◽  
Jill Manchester ◽  
Alexander V. Skurat ◽  
Peter J. Roach ◽  
John C. Lawrence

The effects of transgenic overexpression of glycogen synthase in different types of fast-twitch muscle fibers were investigated in individual fibers from the anterior tibialis muscle. Glycogen synthase was severalfold higher in all transgenic fibers, although the extent of overexpression was twofold greater in type IIB fibers. Effects of the transgene on increasing glycogen and phosphorylase and on decreasing UDP-glucose were also more pronounced in type IIB fibers. However, in any grouping of fibers having equivalent malate dehydrogenase activity (an index of oxidative potential), glycogen was higher in the transgenic fibers. Thus increasing synthase is sufficient to enhance glycogen accumulation in all types of fast-twitch fibers. Effects on glucose transport and glycogen synthesis were investigated in experiments in which diaphragm, extensor digitorum longus (EDL), and soleus muscles were incubated in vitro. Transport was not increased by the transgene in any of the muscles. The transgene increased basal [14C]glucose into glycogen by 2.5-fold in the EDL, which is composed primarily of IIB fibers. The transgene also enhanced insulin-stimulated glycogen synthesis in the diaphragm and soleus muscles, which are composed of oxidative fiber types. We conclude that increasing glycogen synthase activity increases the rate of glycogen synthesis in both oxidative and glycolytic fibers, implying that the control of glycogen accumulation by insulin in skeletal muscle is distributed between the glucose transport and glycogen synthase steps.


2005 ◽  
Vol 25 (15) ◽  
pp. 6629-6638 ◽  
Author(s):  
Misook Oh ◽  
Igor I. Rybkin ◽  
Victoria Copeland ◽  
Michael P. Czubryt ◽  
John M. Shelton ◽  
...  

ABSTRACT Skeletal muscles are a mosaic of slow and fast twitch myofibers. During embryogenesis, patterns of fiber type composition are initiated that change postnatally to meet physiological demand. To examine the role of the protein phosphatase calcineurin in the initiation and maintenance of muscle fiber types, we used a “Flox-ON” approach to obtain muscle-specific overexpression of the modulatory calcineurin-interacting protein 1 (MCIP1/DSCR1), an inhibitor of calcineurin. Myo-Cre transgenic mice with early skeletal muscle-specific expression of Cre recombinase were used to activate the Flox-MCIP1 transgene. Contractile components unique to type 1 slow fibers were absent from skeletal muscle of adult Myo-Cre/Flox-MCIP1 mice, whereas oxidative capacity, myoglobin content, and mitochondrial abundance were unaltered. The soleus muscles of Myo-Cre/Flox-MCIP1 mice fatigued more rapidly than the wild type as a consequence of the replacement of the slow myosin heavy chain MyHC-1 with a fast isoform, MyHC-2A. MyHC-1 expression in Myo-Cre/Flox-MCIP1 embryos and early neonates was normal. These results demonstrate that developmental patterning of slow fibers is independent of calcineurin, while the maintenance of the slow-fiber phenotype in the adult requires calcineurin activity.


1996 ◽  
Vol 270 (5) ◽  
pp. E912-E917 ◽  
Author(s):  
R. C. Hickson ◽  
L. E. Wegrzyn ◽  
D. F. Osborne ◽  
I. E. Karl

Skeletal muscle atrophy from glucocorticoids is prevented by glutamine infusion. Because the gene-encoding glutamine synthetase (GS) is glucocorticoid inducible, it represented an appropriate model for resting whether glucocorticoids and glutamine exert opposing actions on the expression of specific genes related to atrophy in muscle tissue. Rats were administered hydrocortisone 21-acetate or the dosing vehicle (carboxymethyl cellulose) and were infused with saline (Sal) or glutamine (Gln, 240 mM, 0.75 ml/h) for 7 days. Hormone treatment did not significantly lower glutamine levels in fast-twitch white or red regions of the quadriceps. Despite higher serum glutamine concentrations with amino acid infusion [1.52 +/- 0.03 (Gln) vs. 1.20 +/- 0.04 (Sal) mumol/ml], muscle glutamine concentrations were not markedly increased in these fiber types. In saline-infused animals, glucocorticoid treatment produced 200-300% increases in plantaris, fast-twitch white, and fast-twitch red muscle GS enzyme activity and mRNA. Moreover, in all muscle types studied, glutamine infusion diminished glucocorticoid effects on GS enzyme activity to 131-159% and on GS mRNA to 110-200% of the values in saline-treated controls. These data demonstrate that glutamine infusion results in inhibiting GS expression, but the absence of changes in muscle glutamine concentration suggests the interplay of additional regulators of the GS gene.


2007 ◽  
Vol 292 (2) ◽  
pp. E571-E576 ◽  
Author(s):  
Paul J. LeBlanc ◽  
Robert A. Harris ◽  
Sandra J. Peters

Fiber type specificity of pyruvate dehydrogenase (PDH) phosphatase (PDP) was determined in fed (CON) and 48-h food-deprived (FD) rats. PDP activity and isoform protein content were determined in soleus (slow-twitch oxidative), red gastrocnemius (RG; fast-twitch oxidative glycolytic), and white gastrocnemius (WG; fast-twitch glycolytic) muscles. When normalized for mitochondrial volume, there was no difference in PDP activity between muscle types or CON and FD. When expressed per gram wet tissue weight, PDP activity was higher in RG compared with soleus and WG in both CON and FD rats. PDP activities from CON muscles were 1.48 ± 0.19, 2.68 ± 0.65, and 1.20 ± 0.33 nmol·min−1·g wet tissue wt−1 in soleus, RG, and WG, respectively, and decreased in FD muscles (1.22 ± 0.22, 2.00 ± 0.57, and 0.84 ± 0.18 nmol·min−1·g wet tissue wt−1). This correlated with increased PDP2 protein, however, only in RG, as PDP2 was not detectable in soleus or WG. PDP1 protein was not responsive to food deprivation in all fiber types. In conclusion, PDP activity and protein content were higher in fast-twitch oxidative glycolytic muscles from CON and FD rats, identifying a unique inter- and intramuscular distribution. FD induced a small but significant decrease in PDP activity that was partially due to decreases in PDP2 protein. As a result, coordinate changes to PDP activity opposite to those of the other regulatory enzyme, PDH kinase, during food deprivation would maximize the inactivation of skeletal muscle PDH and enhance carbohydrate conservation during periods of limited carbohydrate supply.


Sign in / Sign up

Export Citation Format

Share Document