Pulmonary vascular responses to surgical chemodenervation and chemical sympathectomy in dogs

1989 ◽  
Vol 66 (1) ◽  
pp. 42-50 ◽  
Author(s):  
R. Naeije ◽  
P. Lejeune ◽  
M. Leeman ◽  
C. Melot ◽  
J. Closset

We investigated the effects of surgical peripheral chemoreceptor denervation, chemical sympathectomy with 6-hydroxydopamine (6-OHDA), and the peripheral chemoreceptor stimulant almitrine on multipoint pulmonary arterial pressure-cardiac index (PAP/Q) plots in 30 pentobarbital sodium-anesthetized dogs ventilated alternatively in hyperoxia [fraction of inspired O2, (FIO2) = 0.4] and hypoxia (FIO2 = 0.1). A hypoxic pulmonary vasoconstriction (HPV), i.e., a hypoxia-induced increase in PAP over the entire range of Q studied, from 2 to 5 l.min-1.m-2, was elicited in all the animals. Surgical denervation of the carotid and aortic chemoreceptors in a first group of nine dogs increased PAP at the lowest Q of 2 and 3 l.min-1.min-2 in hyperoxia and increased PAP at all levels of Q in hypoxia, so that HPV was enhanced. Chemical sympathectomy in a second group of eight dogs increased PAP at all levels of Q to a comparable extent in hyperoxia and hypoxia so that HPV remained unchanged. Almitrine (8 micrograms.kg-1.min-1 iv) in a third group of eight dogs increased PAP at all levels of Q in hyperoxia but had no effect on PAP/Q plots in hypoxia, so that HPV was inhibited. Almitrine had these same pulmonary vascular effects when administered to the chemodenervated and the sympathectomized dogs. Sham operation and a 2-h delay in a final group of five dogs had no effect on hyperoxic or hypoxic PAP/Q plots. We conclude that in intact dogs 1) the sympathetic nervous system reduces both hyperoxic and hypoxic pulmonary vascular tone, 2) stimulation of the peripheral chemoreceptors inhibits HPV, and 3) almitrine has direct pulmonary vasoconstricting effects in hyperoxia but not hypoxia.

1987 ◽  
Vol 63 (3) ◽  
pp. 969-977 ◽  
Author(s):  
R. Naeije ◽  
P. Lejeune ◽  
M. Leeman ◽  
C. Melot ◽  
T. Deloof

We investigated the effects of nitroprusside and isoflurane on multipoint pulmonary arterial pressure (PAP)/cardiac index (Q) plots in pentobarbital sodium-anesthetized dogs ventilated alternatively in hyperoxia (fraction of inspired O2, FIO2, 0.4) and hypoxia (FIO2 0.1). Over the entire range of Q studied, 2–5 l.min-1.m-2, hypoxia increased PAP in 16 dogs (“responders”) and did not affect PAP in 16 other dogs (“nonresponders”). A hypoxic pulmonary vasoconstriction (HPV) was restored in the nonresponders by intravenous administration of 1 g of acetylsalicylic acid (ASA). Nitroprusside (5 micrograms.kg-1.min-1) inhibited HPV in responders (n = 8) and nonresponders treated with ASA (n = 8). End-tidal 1.41% isoflurane (a minimal alveolar concentration equal to one for dogs) did not affect HPV in responders (n = 8) and nonresponders treated with ASA (n = 8). In the latter group isoflurane increased PAP at the highest Q studied (3–5 l.min-1.m-2) in hyperoxia and hypoxia. In a final group of eight dogs with Q kept constant, PAP remained unchanged during two consecutive sequences of alternated 30-min periods (maximum time to generate a PAP/Q plot) successively at FIO2 0.4 and 0.1, and the hypoxia-induced increase in PAP was reproducible. Thus the present experimental model appeared suitable for the study of the effects of hypoxia and drugs on pulmonary vascular tone of intact dogs. At the given doses HPV was inhibited by nitroprusside and not affected by isoflurane. Products of arachidonic acid metabolism possibly could be implicated in the pulmonary vascular effects of isoflurane.


1991 ◽  
Vol 70 (4) ◽  
pp. 1867-1873 ◽  
Author(s):  
P. Lejeune ◽  
J. L. Vachiery ◽  
J. M. De Smet ◽  
M. Leeman ◽  
S. Brimioulle ◽  
...  

The effects of an increase in alveolar pressure on hypoxic pulmonary vasoconstriction (HPV) have been reported variably. We therefore studied the effects of positive end-expiratory pressure (PEEP) on pulmonary hemodynamics in 13 pentobarbital-anesthetized dogs ventilated alternately in hyperoxia [inspired O2 fraction (FIO2) 0.4] and in hypoxia (FIO2 0.1). In this intact animal model, HPV was defined as the gradient between hypoxic and hyperoxic transmural (tm) mean pulmonary arterial pressure [Ppa(tm)] at any level of cardiac index (Q). Ppa(tm)/Q plots were constructed with mean transmural left atrial pressure [Pla(tm)] kept constant at approximately 6 mmHg (n = 5 dogs), and Ppa(tm)/PEEP plots were constructed with Q kept constant approximately 2.8 l.min-1.m-2 and Pla(tm) kept constant approximately 8 mmHg (n = 8 dogs). Q was manipulated using a femoral arteriovenous bypass and a balloon catheter in the inferior vena cava. Pla(tm) was held constant by a balloon catheter placed by left thoracotomy in the left atrium. Increasing PEEP, from 0 to 12 Torr by 2-Torr increments, at constant Q and Pla(tm), increased Ppa(tm) from 14 +/- 1 (SE) to 19 +/- 1 mmHg in hyperoxia but did not affect Ppa(tm) (from 22 +/- 2 to 23 +/- 1 mmHg) in hypoxia. Both hypoxia and PEEP, at constant Pla(tm), increased Ppa(tm) over the whole range of Q studied, from 1 to 5 l/min, but more at the highest than at the lowest Q and without change in extrapolated pressure intercepts. Adding PEEP to hypoxia did not affect Ppa(tm) at all levels of Q.(ABSTRACT TRUNCATED AT 250 WORDS)


1979 ◽  
Vol 46 (3) ◽  
pp. 529-533 ◽  
Author(s):  
C. A. Hales ◽  
D. M. Westphal

The influence of chemical sympathectomy with 6-hydroxydopamine (6-OHDA) on regional alveolar hypoxic vasconstriction and on global hypoxic pulmonary vasoconstriction was investigated. In eight dogs a double-lumened endotracheal tube allowed ventilation of one lung with nitrogen as an alveolar hypoxic challenge while ventilation of the other lung with 100% O2 maintained adequate systemic oxygenation. Distribution of perfusion to the two lungs was determined with 133Xe and external counters. Mean perfusion to the test lung was 50.9 +/- 4.9% of total lung perfusion on room air and decreased by 32.4% (P smaller than 0.01) during alveolar hypoxia. Following 6-OHDA the test lung continued to reduce perfusion during alveolar hypoxia by 27.3%. In five dogs global hypoxia induced a 106% increase in pulmonary vascular resistance (PVR) prior to 6-OHDA and a 90% increase in PVR after 6-OHDA. After 6-OHDA no rise in PRV or systemic blood pressure occurred in response to tyramine, confirming effective sympathectomy by the 6-OHDA. Thus, sympathectomy with 6-OHDA failed to substantially block regional alveolar hypoxic vasoconstriction or global hypoxic pulmonary vasconstriction.


1993 ◽  
Vol 74 (5) ◽  
pp. 2188-2193 ◽  
Author(s):  
P. Ewalenko ◽  
C. Stefanidis ◽  
A. Holoye ◽  
S. Brimioulle ◽  
R. Naeije

The pulmonary vascular effects of inhaled anesthetics have been reported variably. We compared the effects of intravenous anesthesia (propofol) and inhalational anesthesia (isoflurane) on multipoint mean [pulmonary arterial pressure (Ppa)-pulmonary arterial occluded pressure (PpaO)]/cardiac output (Q) plots and on pulmonary vascular impedance (PVZ) spectra in eight dogs alternatively ventilated in hyperoxia [inspired O2 fraction (FIO2) 0.4] and in hypoxia (FIO2 0.1). Q was altered by a manipulation of venous return. During propofol, hypoxia increased (Ppa-PpaO) by an average of 2–3 mmHg over the entire range of Q studied, from 1 to 2.5 l.min-1 x m-2. This hypoxic pulmonary vasoconstriction (HPV) was associated with insignificant changes in PVZ. Decreasing Q in hypoxia and hyperoxia did not affect PVZ. Compared with propofol, isoflurane decreased (Ppa-PpaO) by an average of 2–5 mmHg at all levels of Q studied in both hypoxia and hyperoxia but did not affect HPV. During isoflurane anesthesia, 0 Hz PVZ was lower (P < 0.01) in hypoxia, but otherwise the PVZ spectrum was not different from that recorded during propofol anesthesia. We conclude that, in dogs, 1 degree general anesthesia with isoflurane alone decreases pulmonary vascular tone without inhibition of HPV and that 2 degrees pressure/Q plots in the time domain are more sensitive than those in the frequency domain to subtle hemodynamic changes induced by hypoxia or isoflurane at the periphery of the pulmonary vasculature.


1990 ◽  
Vol 259 (1) ◽  
pp. H93-H100 ◽  
Author(s):  
P. Lejeune ◽  
J. M. De Smet ◽  
P. de Francquen ◽  
M. Leeman ◽  
S. Brimioulle ◽  
...  

To further explore the mechanism of hypoxic pulmonary vasoconstriction, we studied the mean pulmonary arterial pressure (Ppa)/left atrial pressure (Pla) relationship at fixed cardiac index (Q) and the Ppa/Q relationship at several levels of fixed Pla in pentobarbital sodium-anesthetized dogs ventilated alternately in hyperoxia [fraction of inspired O2 (FIO2) 0.4 or 1.0] and in hypoxia (FIO2 0.1). In all experimental conditions, Ppa/Q plots were linear with extrapolated pressure intercepts (Pi) not significantly different from Pla. Hypoxia increased the slope of Ppa/Q plots and did not affect Pi. In hyperoxia, increasing Pla (3 to 26 mmHg) induced approximately equal increases in Ppa at fixed Q and shifted Ppa/Q plots toward higher pressures in a parallel manner. In hypoxia, increasing Pla (4 to 25 mmHg) did not affect Ppa at fixed Q until Pla exceeded 16 mmHg and shifted Ppa/Q plots toward higher pressures with a decrease in slope. Consequently, the hypoxia-induced increases in Ppa at constant Q and constant Pla were attenuated at higher Pla. Thus, in anesthetized dogs, hypoxia increases the slope of Ppa/Q plots without affecting Pi at fixed Pla, and an increase in Pla inhibits hypoxic pulmonary vasoconstriction. These results can be explained without invoking a hypoxia-induced Starling resistor mechanism in the pulmonary circulation.


1989 ◽  
Vol 67 (2) ◽  
pp. 833-838 ◽  
Author(s):  
M. Leeman ◽  
J. Closset ◽  
J. L. Vachiery ◽  
P. Lejeune ◽  
C. Melot ◽  
...  

Hypoxic stimulation of the peripheral chemoreceptors has been reported to inhibit hypoxic pulmonary vasoconstriction. To evaluate the pathophysiological importance of this observation, we investigated the effects of surgical peripheral chemoreceptor denervation on pulmonary vascular tone and gas exchange in 17 pentobarbital-anesthetized dogs with oleic acid pulmonary edema. Pulmonary arterial pressure-cardiac index (Ppa/Q) plots, blood gases, and intrapulmonary shunt measured by the SF6 method were obtained at base line, after peripheral chemodenervation (n = 9) or after sham operation (n = 8), and again after 0.09 ml.kg-1 intravenous oleic acid. Over the range of Q studied (2–5 l.min-1.m-2), Ppa/Q plots were best fitted as first-order polynomials in most dogs in all experimental conditions. Chemoreceptor denervation increased Ppa at the lowest Q, while sham operation did not affect the Ppa/Q plots. Oleic acid increased Ppa over the entire range of Q and increased intrapulmonary shunt. This latter was measured at identical Q during the construction of the Ppa/Q plots. Chemoreceptor-denervated dogs, compared with sham-operated dogs, had the same pulmonary hypertension but lower intrapulmonary shunt (36 +/- 4 vs. 48 +/- 5%, means +/- SE, P less than 0.04) and venous admixture (43 +/- 4 vs. 54 +/- 3%, P less than 0.02). We conclude that in intact dogs chemoreceptor denervation attenuates the rise in intrapulmonary shunt after oleic acid lung injury. Whether this improvement in gas exchange is related to an enhanced hypoxic pulmonary vasoconstriction is uncertain.


1990 ◽  
Vol 258 (2) ◽  
pp. H347-H353 ◽  
Author(s):  
S. Brimioulle ◽  
P. Lejeune ◽  
J. L. Vachiery ◽  
M. Leeman ◽  
C. Melot ◽  
...  

We studied the effects of metabolic and respiratory acidosis (pH 7.20) and alkalosis (pH 7.60) on pulmonary vascular tone in 32 pentobarbital-anesthetized dogs ventilated with hyperoxia (inspired oxygen fraction, FIO2 0.40) and with hypoxia (FIO2 0.10). Ventilation, pulmonary capillary wedge pressure (Ppw), and cardiac output (3 l.min–1.m-2) were maintained constant to prevent passive changes in pulmonary arterial pressure (Ppa). Metabolic acidosis and alkalosis were induced with HCl (2 mmol.kg-1.h-1) and NaHCO3-Na2CO3 (5 mmol.kg-1.h-1) infusions, respectively, and respiratory acidosis and alkalosis by modifying the inspiratory CO2 fraction. The hypoxia-induced rise in Ppa-Ppw gradient increased from 5 to 9 mmHg in metabolic acidosis (P less than 0.001), decreased from 6 to 1 mmHg in metabolic alkalosis (P less than 0.001), remained unchanged in respiratory acidosis, and decreased from 5 to 2 mmHg in respiratory alkalosis (P less than 0.001). Linear relationships were found between pH and Ppa-Ppw gradients. These data indicate that in intact anesthetized dogs, metabolic acidosis and alkalosis, respectively, enhance and reverse hypoxic pulmonary vasoconstriction (HPV). Respiratory acidosis did not affect HPV and respiratory alkalosis blunted HPV, which suggests an pH-independent vasodilating effect of CO2.


1985 ◽  
Vol 249 (5) ◽  
pp. H968-H973
Author(s):  
T. J. Kulik ◽  
R. K. Schutjer ◽  
D. F. Howland ◽  
J. E. Lock

There is preliminary evidence suggesting that hypoxic pulmonary vasoconstriction may be mediated by slow-reacting substance of anaphylaxis (SRS-A), which is comprised of leukotrienes C4, D4, and E4. We studied the effects of the SRS-A antagonist FPL 57231 (FPL) on the hypoxic pulmonary vasoconstrictor response and on systemic vascular resistance in awake, chronically instrumented young lambs. Two other studies were performed to ascertain whether FPL's vasodilation was specific for hypoxic pulmonary vasoconstriction: the effect of FPL infusion in pulmonary and systemic vascular resistance was measured in six normoxic lambs, and the effect of FPL on 5-hydroxytryptamine (5-HT)-mediated vasoconstriction was determined. In seven lambs, mean pulmonary arterial pressure was 21 mmHg in room air and 28 mmHg in hypoxia (Po2 = 43 Torr). During hypoxia, FPL infusion (2 mg X kg-1 X min-1) reversibly decreased pulmonary arterial pressure to 15 mmHg; pulmonary arteriolar resistance also fell below normoxia levels with FPL. FPL also caused a fall in aortic pressure and systemic vascular resistance in these hypoxic lambs, but the decrease in systemic resistance was less than the fall in pulmonary resistance. beta-Adrenergic blockade using propranolol (1 mg/kg) did not affect the pulmonary vasodilation caused by FPL. In six normoxic lambs, FPL infusion also significantly decreased pulmonary and systemic vascular resistance (29% in each case). These data are consistent with the idea that leukotrienes may be involved in adjusting both pulmonary and systemic vascular tone, but further work is necessary to establish whether FPL's vasodilation is mediated via its leukotriene antagonism or is a nonspecific effect of FPL.


1963 ◽  
Vol 204 (6) ◽  
pp. 987-990 ◽  
Author(s):  
J. Albrecht Koehler ◽  
Theofilos J. Tsagaris ◽  
Hiroshi Kuida ◽  
Hans H. Hecht

The demonstration in a previous study of the effectiveness of an antihistaminic drug in blocking some of the systemic but not the pulmonary vascular effects of endotoxin led to the study of the effect of an inhibitor of serotonin synthesis, alpha-methyl 3,4-dihydroxyphenylalanine (α-m dopa). One group of seven dogs was pretreated with a single dose of 250 mg, and a second group of six animals with three doses of 250 mg, each given at 10-min intervals. Results in these two groups were compared with those in six control animals. Purified E. coli endotoxin, 1 mg/kg, was administered intravenously in all 19 experiments. Intravenous administration of α-m dopa alone had no effect on measured physiologic parameters. Compared with the endotoxin response in control animals, pretreatment with either dose level appeared to have no effect on the magnitude or duration of systemic arterial hypotension, portal venous hypertension, or drop in cardiac output. However, pretreatment with 250-mg and 750-mg doses was associated with significant reduction and abolition, respectively, of pulmonary arterial hypertension. The results are consistent with the interpretation that the pulmonary vasoconstrictive response to endotoxin is mediated through the release of serotonin and that α-m dopa blocks this response by interfering with the synthesis of this intermediary.


2005 ◽  
Vol 289 (1) ◽  
pp. L5-L13 ◽  
Author(s):  
Letitia Weigand ◽  
Joshua Foxson ◽  
Jian Wang ◽  
Larissa A. Shimoda ◽  
J. T. Sylvester

Previous studies indicated that acute hypoxia increased intracellular Ca2+ concentration ([Ca2+]i), Ca2+ influx, and capacitative Ca2+ entry (CCE) through store-operated Ca2+ channels (SOCC) in smooth muscle cells from distal pulmonary arteries (PASMC), which are thought to be a major locus of hypoxic pulmonary vasoconstriction (HPV). Moreover, these effects were blocked by Ca2+-free conditions and antagonists of SOCC and nonselective cation channels (NSCC). To test the hypothesis that in vivo HPV requires CCE, we measured the effects of SOCC/NSCC antagonists (SKF-96365, NiCl2, and LaCl3) on pulmonary arterial pressor responses to 2% O2 and high-KCl concentrations in isolated rat lungs. At concentrations that blocked CCE and [Ca2+]i responses to hypoxia in PASMC, SKF-96365 and NiCl2 prevented and reversed HPV but did not alter pressor responses to KCl. At 10 μM, LaCl3 had similar effects, but higher concentrations (30 and 100 μM) caused vasoconstriction during normoxia and potentiated HPV, indicating actions other than SOCC blockade. Ca2+-free perfusate and the voltage-operated Ca2+ channel (VOCC) antagonist nifedipine were potent inhibitors of pressor responses to both hypoxia and KCl. We conclude that HPV required influx of Ca2+ through both SOCC and VOCC. This dual requirement and virtual abolition of HPV by either SOCC or VOCC antagonists suggests that neither channel provided enough Ca2+ on its own to trigger PASMC contraction and/or that during hypoxia, SOCC-dependent depolarization caused secondary activation of VOCC.


Sign in / Sign up

Export Citation Format

Share Document