Oxygen cost of breathing during fatiguing inspiratory resistive loads

1989 ◽  
Vol 66 (5) ◽  
pp. 2045-2055 ◽  
Author(s):  
F. D. McCool ◽  
G. E. Tzelepis ◽  
D. E. Leith ◽  
F. G. Hoppin

When a subject breathes against an inspiratory resistance, the inspiratory pressure, the inspiratory flow, and the lung volume at which the breathing task takes place all interact to determine the length of time the task can be sustained (Tlim). We hypothesized that the mechanism actually limiting tasks in which these parameters were varied involved the rate of energy utilization by the inspiratory muscles. To test this hypothesis, we studied four experienced normal subjects during fatiguing breathing tasks performed over a range of pressures and flows and at two different lung volumes. We assessed energy utilization by measuring the increment in the rate of whole body O2 consumption due to the breathing task (VO2 resp). Power and mean esophageal pressure correlated with Tlim but depended also on lung volume and inspiratory flow rate. In contrast, VO2 resp closely correlated with Tlim, and this relationship was not systematically altered by inspiratory flow or lung volume. The shape of the VO2 resp vs. Tlim curve was approximately hyperbolic, with high rates of VO2 resp associated with short endurance times and lower rates of VO2 resp approaching an asymptotic value at high Tlim. These findings are consistent with a mechanism whereby a critical rate of energy utilization determines the endurance of the inspiratory pump, and that rate varies with pressure, flow, and lung volume.

1988 ◽  
Vol 64 (6) ◽  
pp. 2482-2489 ◽  
Author(s):  
P. Leblanc ◽  
E. Summers ◽  
M. D. Inman ◽  
N. L. Jones ◽  
E. J. Campbell ◽  
...  

The capacity of inspiratory muscles to generate esophageal pressure at several lung volumes from functional residual capacity (FRC) to total lung capacity (TLC) and several flow rates from zero to maximal flow was measured in five normal subjects. Static capacity was 126 +/- 14.6 cmH2O at FRC, remained unchanged between 30 and 55% TLC, and decreased to 40 +/- 6.8 cmH2O at TLC. Dynamic capacity declined by a further 5.0 +/- 0.35% from the static pressure at any given lung volume for every liter per second increase in inspiratory flow. The subjects underwent progressive incremental exercise to maximum power and achieved 1,800 +/- 45 kpm/min and maximum O2 uptake of 3,518 +/- 222 ml/min. During exercise peak esophageal pressure increased from 9.4 +/- 1.81 to 38.2 +/- 5.70 cmH2O and end-inspiratory esophageal pressure increased from 7.8 +/- 0.52 to 22.5 +/- 2.03 cmH2O from rest to maximum exercise. Because the estimated capacity available to meet these demands is critically dependent on end-inspiratory lung volume, the changes in lung volume during exercise were measured in three of the subjects using He dilution. End-expiratory volume was 52.3 +/- 2.42% TLC at rest and 38.5 +/- 0.79% TLC at maximum exercise.


1986 ◽  
Vol 60 (1) ◽  
pp. 299-303 ◽  
Author(s):  
F. D. McCool ◽  
D. R. McCann ◽  
D. E. Leith ◽  
F. G. Hoppin

We examined the effects of varying inspiratory pressures and flows on inspiratory muscle endurance. Four normal subjects performed voluntary forced breathing with various assigned inspiratory tasks. Duty cycle, tidal volume, and mean lung volume were the same in all tasks. Mean esophageal pressure, analogous to a pressure-time integral (PTes), was varied over a wide range. In each task the subject maintained an assigned PTes while breathing on one of a range of inspiratory resistors, and this gave a range of inspiratory flows at any given PTes. Inspiratory muscle endurance for each task was assessed by the length of time the task could be maintained (Tlim). For a given resistor, Tlim increased as PTes decreased. At a given PTes, Tlim increased as the external resistance increased and therefore as mean inspiratory flow rate (VI) decreased. Furthermore, for a given Tlim, PTes and VI were linearly related with a negative slope. We conclude that inspiratory flow, probably because of its relationship to the velocity of muscle shortening, is an independent variable importantly influencing endurance of the inspiratory muscles.


1986 ◽  
Vol 61 (1) ◽  
pp. 16-24 ◽  
Author(s):  
P. W. Collett ◽  
L. A. Engel

We examined the relationship between the O2 cost of breathing (VO2 resp) and lung volume at constant load, ventilation, work rate, and pressure-time product in five trained normal subjects breathing through an inspiratory resistance at functional residual capacity (FRC) and when lung volume (VL) was increased to 37 +/- 2% (mean +/- SE) of inspiratory capacity (high VL). High VL was maintained using continuous positive airway pressure of 9 +/- 2 cmH2O and with the subjects coached to relax during expiration to minimize respiratory muscle activity. Six paired runs were performed in each subject at constant tidal volume (0.62 +/- 0.2 liters), frequency (23 +/- 1 breaths/min), inspiratory flow rate (0.45 +/- 0.1 l/s), and inspiratory muscle pressure (45 +/- 2% of maximum static pressure at FRC). VO2 resp increased from 109 +/- 15 ml/min at FRC by 41 +/- 11% at high VL (P less than 0.05). Thus the efficiency of breathing at high VL (3.9 +/- 0.2%) was less than that at FRC (5.2 +/- 0.3%, P less than 0.01). The decrease in inspiratory muscle efficiency at high VL may be due to changes in mechanical coupling, in the pattern of recruitment of the respiratory muscles, or in the intrinsic properties of the inspiratory muscles at shorter length. When the work of breathing at high VL was normalized for the decrease in maximum inspiratory muscle pressure with VL, efficiency at high VL (5.2 +/- 0.3%) did not differ from that at FRC (P less than 0.7), suggesting that the fall in efficiency may have been related to the fall in inspiratory muscle strength. During acute hyperinflation the decreased efficiency contributes to the increased O2 cost of breathing and may contribute to the diminished inspiratory muscle endurance.


1988 ◽  
Vol 64 (5) ◽  
pp. 1796-1802 ◽  
Author(s):  
G. Tzelepis ◽  
F. D. McCool ◽  
D. E. Leith ◽  
F. G. Hoppin

We examined the influence of lung volume on the ability of normal subjects to sustain breathing against inspiratory resistive loading. Four normal subjects breathed on a closed circuit in which inspiration was loaded by a flow resistor. Subjects were assigned a series of breathing tasks over a range of pressures and flows. In each task there was a specified resistor and also targets for either mean esophageal or airway opening pressure, respiratory frequency, and duty cycle. Endurance was assessed as the length of time to failure of the assigned task. The prime experimental variable was lung volume, which was increased by approximately 1 liter during some tasks; 8 cmH2O continuous positive airway pressure was applied to increase lung volume without increasing elastic load. As previously shown (McCool et al.J. Appl. Physiol. 60: 299–303, 1986), for tasks that could be sustained for the same time, there was an inverse linear relationship of mean esophageal pressure with inspiratory flow rate. This trade-off of pressure and flow was apparent both with and without the increase of lung volume. Comparable tasks, however, could not be sustained as long at the higher lung volumes. This effect of volume on endurance was greater for tasks characterized by high inspiratory pressures and low flow rates than for tasks that could be sustained for the same time but that had lower inspiratory pressures and higher flow rates. This is probably due to the effects of shortening of the sarcomere on fatiguability. Increased lung volume, per se, may contribute to respiratory failure because of increased inspiratory muscle fatiguability by mechanisms independent of elastic load.


1987 ◽  
Vol 62 (5) ◽  
pp. 1962-1969 ◽  
Author(s):  
W. A. Whitelaw ◽  
B. McBride ◽  
G. T. Ford

The mechanism by which large lung volume lessens the discomfort of breath holding and prolongs breath-hold time was studied by analyzing the pressure waves made by diaphragm contractions during breath holds at various lung volumes. Subjects rebreathed a mixture of 8% CO2–92% O2 and commenced breath holding after reaching an alveolar plateau. At all volumes, regular rhythmic contractions of inspiratory muscles, followed by means of gastric and pleural pressures, increased in amplitude and frequency until the breakpoint. Expiratory muscle activity was more prominent in some subjects than others, and increased through each breath hold. Increasing lung volume caused a delay in onset and a decrease in frequency of contractions with no consistent change in duty cycle and a decline in magnitude of esophageal pressure swings that could be accounted for by force-length and geometric properties. The effect of lung volume on the timing of contractions most resembled that of a chest wall reflex and is consistent with the hypothesis that the contractions are a major source of dyspnea in breath holding.


1988 ◽  
Vol 65 (2) ◽  
pp. 760-766 ◽  
Author(s):  
D. S. Dodd ◽  
P. W. Collett ◽  
L. A. Engel

We examined the combined effect of an increase in inspiratory flow rate and frequency on the O2 cost of inspiratory resistive breathing (VO2 resp). In each of three to six pairs of runs we measured VO2 resp in six normal subjects breathing through an inspiratory resistance with a constant tidal volume (VT). One of each pair of runs was performed at an inspiratory muscle contraction frequency of approximately 10/min and the other at approximately 30/min. Inspiratory mouth pressure was 45 +/- 2% (SE) of maximum at the lower contraction frequency and 43 +/- 2% at the higher frequency. Duty cycle (the ratio of contraction time to total cycle time) was constant at 0.51 +/- 0.01. However, during the higher frequency runs, two of every three contractions were against an occluded airway. Because VT and duty cycle were kept constant, mean inspiratory flow rate increased with frequency. Careful selection of appropriate parameters allowed the pairs of runs to be matched both for work rate and pressure-time product. The VO2 resp did not increase, despite approximately threefold increases in both inspiratory flow rate and contraction frequency. On the contrary, there was a trend toward lower values for VO2 resp during the higher frequency runs. Because these were performed at a slightly lower mean lung volume, a second study was designed to measure the VO2 resp of generating the same inspiratory pressure (45% maximum static inspiratory mouth pressure at functional residual capacity) at the same frequency but at two different lung volumes. This was achieved with a negligibly small work rate.(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 62 (4) ◽  
pp. 1665-1670 ◽  
Author(s):  
J. W. Fitting ◽  
D. A. Chartrand ◽  
T. D. Bradley ◽  
K. J. Killian ◽  
A. Grassino

The respiratory sensations evoked by added inspiratory loads are currently thought to be largely mediated by the activity of the inspiratory muscles. Because of the differences in proprioceptors and in afferent and efferent innervations among the inspiratory muscles, we hypothesized that the sensation evoked by a given load would be different when the motor command is directed mainly to rib cage muscles or mainly to the diaphragm. To test this hypothesis, we studied six normal subjects breathing against several inspiratory resistances while emphasizing the use of rib cage muscles, or the diaphragm, or a combination of both. At the end of 10 loaded breaths the subjects rated the perceived magnitude of inspiratory effort on a Borg scale. A linear and unique relationship (r = 0.96 +/- 0.02; P less than 0.001) was found between the sensation and esophageal pressure (Pes) in the three thoracoabdominal breathing patterns. We conclude that the level of Pes, whether generated mainly by the rib cage muscles or the diaphragm, is the main variable related to the sensation of inspiratory effort under external inspiratory loads.


1992 ◽  
Vol 73 (3) ◽  
pp. 832-836 ◽  
Author(s):  
S. Zhang ◽  
O. P. Mathew

Negative pressure applied to the upper airway has an excitatory effect on the activity of upper airway muscles and an inhibitory effect on thoracic inspiratory muscles. The role of lung volume feedback in this response was investigated in 10 anesthetized spontaneously breathing adult rabbits. To alter lung volume feedback, the lower airway was exposed to SO2 (250 ppm for 15 min), thereby blocking slowly adapting receptors (SARs). Negative pressure pulses (5, 10, and 20 cmH2O, 300-ms duration) were applied to the functionally isolated upper airway before and after SAR blockade. Tracheal airflow and electromyogram (EMG) of the genioglossus and alae nasi were recorded. Peak EMG, peak inspiratory flow, tidal volume, and respiratory timing of control breaths (3 breaths immediately preceding test) and test breaths were determined. Analysis of variance was used to determine the significance of the effects. Negative pressure pulses increased peak EMG of genioglossus and alae nasi and inspiratory duration and decreased peak inspiratory flow. These effects were larger after SAR blockade. We conclude that a decrease in volume feedback from the lung augments the response to upper airway pressure change.


1990 ◽  
Vol 78 (5) ◽  
pp. 521-525 ◽  
Author(s):  
Manuel J. Barros ◽  
Stefano J. Zammattio ◽  
P. John Rees

1. The cough response to inhalation of citric acid is produced mainly by irritation of the larynx and trachea. Variations in the inspiratory flow rate might lead to changes in deposition of the drug, and consequently in the cough threshold. 2. We have studied the effect of three different inspiratory flow rates in 11 normal, non-smoking subjects (nine males, aged 23–39 years), who inhaled nebulized citric acid (2.5–640 mg/l). The test finished when a cough. was produced at each inhalation (cough threshold) or the maximum concentration was reached. 3. The inspiratory flow rate was limited with a fixed resistance and displayed on a screen so that the subjects could reach a constant inspiratory flow rate of 50, 100 and 150 l/min with a submaximal inspiratory effort. 4. The mean (sd) inspiratory flow rates achieved were 51.4 (5.3), 86.2 (16.6) and 134.4 (22.9) l/min. Baseline forced expiratory volume in 1 s and functional vital capacity were not different on the 3 study days. 5. The cough threshold (geometric mean and 95% confidence intervals) was 21 (9–54) mg/l at an inspiratory flow rate of 50 l/min and 43 (13–141) mg/l at 150 l/min (P <0.05). The amount of drug tolerated by the subjects before the cough threshold was achieved was 5.2 (2.0–13.8) mg at an inspiratory flow rate of 50 l/min and 11.6 (3.4–39.8) mg at 150 l/min (P <0.05). The number of coughs per inhalation was 1.6 (1.1–2.0) at an inspiratory flow rate of 50 l/min and 1.1 (0.7–1.5) at 150 l/min (P <0.05). 6. We conclude that lower inspiratory flow rates were associated with a greater cough stimulus in the citric acid challenge procedure used in this study. This may be related to increased laryngeal deposition. The inspiratory flow rate is a variable which should be controlled in the performance of cough challenges with citric acid.


1990 ◽  
Vol 68 (5) ◽  
pp. 2159-2164 ◽  
Author(s):  
F. Series ◽  
Y. Cormier ◽  
M. Desmeules

The total upper airway resistances are modified during active changes in lung volume. We studied nine normal subjects to assess the influence of passive thoracopulmonary inflation and deflation on nasal and pharyngeal resistances. With the subjects lying in an iron lung, lung volumes were changed by application of an extrathoracic pressure (Pet) from 0 to 20 (+Pet) or -20 cmH2O (-Pet) in 5-cmH2O steps. Upper airway pressures were measured with two low-bias flow catheters, one at the tip of the epiglottis and the other in the posterior nasopharynx. Breath-by-breath resistance measurements were made at an inspiratory flow rate of 300 ml/s at each Pet step. Total upper airway, nasal, and pharyngeal resistances increased with +Pet [i.e., nasal resistance = 139.6 +/- 14.4% (SE) of base-line and pharyngeal resistances = 189.7 +/- 21.1% at 10 cmH2O of +Pet]. During -Pet there were no significant changes in nasal resistance, whereas pharyngeal resistance decreased significantly (pharyngeal resistance = 73.4 +/- 7.4% at -10 cmH2O). We conclude that upper airway resistance, particularly the pharyngeal resistance, is influenced by passive changes in lung volumes, especially pulmonary deflation.


Sign in / Sign up

Export Citation Format

Share Document