Use of bioelectrical impedance to assess body composition changes at high altitude

1992 ◽  
Vol 72 (6) ◽  
pp. 2181-2187 ◽  
Author(s):  
C. S. Fulco ◽  
R. W. Hoyt ◽  
C. J. Baker-Fulco ◽  
J. Gonzalez ◽  
A. Cymerman

This study determined the feasibility of using bioelectrical impedance analysis (BIA) to assess body composition alterations associated with body weight (BW) loss at high altitude. The BIA method was also evaluated relative to anthropometric assessments. Height, BW, BIA, skinfold (SF, 6 sites), and circumference (CIR, 5 sites) measurements were obtained from 16 males (23–35 yr) before, during, and after 16 days of residence at 3,700–4,300 m. Hydrostatic weighings (HW) were performed pre- and postaltitude. Results of 13 previously derived prediction equations using various combinations of height, BW, age, BIA, SF, or CIR measurements as independent variables to predict fat-free mass (FFM), fat mass (FM), and percent body fat (%Fat) were compared with HW. Mean BW decreased from 84.74 to 78.84 kg (P less than 0.01). As determined by HW, FFM decreased by 2.44 kg (P less than 0.01), FM by 3.46 kg (P less than 0.01), and %Fat by 3.02% (P less than 0.01). The BIA and SF methods overestimated the loss in FFM and underestimated the losses in FM and %Fat (P less than 0.01). Only the equations utilizing the CIR measurements did not differ from HW values for changes in FFM, FM, and %Fat. It was concluded that the BIA and SF methods were not acceptable for assessing body composition changes at altitude.

2018 ◽  
Vol 17 (4) ◽  
pp. 1125-1131 ◽  
Author(s):  
Huiping Ding ◽  
Shengjin Dou ◽  
Yiqun Ling ◽  
Guopei Zhu ◽  
Qiong Wang ◽  
...  

Aim: This was a prospective investigation of longitudinal body composition changes in patients with nasopharyngeal carcinoma undergoing concurrent chemoradiotherapy (CCRT) and a comparison of the Patient-Generated Subjective Global Assessment (PG-SGA) and the ESPEN (European Society for Clinical Nutrition and Metabolism) diagnostic criteria (EDC) as evaluation methods. Methods: All patients received standard CCRT according to 2 centers’ current practices. Body composition parameters were determined by bioelectrical impedance analysis and obtained weekly from baseline until the end of treatment. The nutritional status of all patients was evaluated by the PG-SGA and EDC. Results: Forty-eight patients were eligible for analysis. Most body composition parameters, including body cell mass, fat mass, fat-free mass, and skeletal mass, as well as body weight, body mass index, and PG-SGA score, significantly decreased during CCRT ( P = .00). The PG-SGA was shown to have better sensitivity than the EDC; however, the 2 different evaluation methods were found to have a perfect concordance at Week 4 and Week 6 (κ = 0.91 and 0.96, P = .00 and .00, respectively). Pearson correlation analyses showed that fat-free mass index and body weight were positively correlated with global quality of life score ( r = 0.81, P = .00; r = 0.78, P = .00, respectively). Conclusions: This study has shown that body composition parameters, especially fat-free mass index, are valuable for diagnosing malnutrition in patients with nasopharyngeal carcinoma receiving CCRT. We recommend that these bioelectrical impedance analysis techniques should be increasingly implemented in nutritional assessments.


1998 ◽  
Vol 32 (1) ◽  
pp. 65-71 ◽  
Author(s):  
K. Rutter ◽  
L. Hennoste ◽  
L. C. Ward ◽  
B. H. Cornish ◽  
B. J. Thomas

Bioelectrical impedance analysis (BIA) was used to assess body composition in rats fed on either standard laboratory diet or on a high-fat diet designed to induce obesity. Bioelectrical impedance analysis predictions of total body water and thus fat-free mass (FFM) for the group mean values were generally within 5% of the measured values by tritiated water (3H2O) dilution. The limits of agreement for the procedure were, however, large, approximately ±25%, limiting the applicability of the technique for measurement of body composition in individual animals.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 920
Author(s):  
Jaz Lyons-Reid ◽  
Leigh C. Ward ◽  
Timothy Kenealy ◽  
Wayne Cutfield

There has been increasing interest in understanding body composition in early life and factors that may influence its evolution. While several technologies exist to measure body composition in infancy, the equipment is typically large, and thus not readily portable, is expensive, and requires a qualified operator. Bioelectrical impedance analysis shows promise as an inexpensive, portable, and easy to use tool. Despite the technique being widely used to assess body composition for over 35 years, it has been seldom used in infancy. This may be related to the evolving nature of the fat-free mass compartment during this period. Nonetheless, a number of factors have been identified that may influence bioelectrical impedance measurements, which, when controlled for, may result in more accurate measurements. Despite this, questions remain in infants regarding the optimal size and placement of electrodes, the standardization of normal hydration, and the influence of body position on the distribution of water throughout the body. The technology requires further evaluation before being considered as a suitable tool to assess body composition in infancy.


2012 ◽  
Vol 109 (4) ◽  
pp. 639-647 ◽  
Author(s):  
Saijuddin Shaikh ◽  
Kerry J. Schulze ◽  
Anura Kurpad ◽  
Hasmot Ali ◽  
Abu Ahmed Shamim ◽  
...  

Equations for predicting body composition from bioelectrical impedance analysis (BIA) parameters are age-, sex- and population-specific. Currently there are no equations applicable to women of reproductive age in rural South Asia. Hence, we developed equations for estimating total body water (TBW), fat-free mass (FFM) and fat mass in rural Bangladeshi women using BIA, with 2H2O dilution as the criterion method. Women of reproductive age, participating in a community-based placebo-controlled trial of vitamin A or β-carotene supplementation, were enrolled at 19·7 (sd 9·3) weeks postpartum in a study to measure body composition by 2H2O dilution and impedance at 50 kHz using multi-frequency BIA (n 147), and resistance at 50 kHz using single-frequency BIA (n 82). TBW (kg) by 2H2O dilution was used to derive prediction equations for body composition from BIA measures. The prediction equation was applied to resistance measures obtained at 13 weeks postpartum in a larger population of postpartum women (n 1020). TBW, FFM and fat were 22·6 (sd 2·7), 30·9 (sd 3·7) and 10·2 (sd 3·8) kg by 2H2O dilution. Height2/impedance or height2/resistance and weight provided the best estimate of TBW, with adjusted R2 0·78 and 0·76, and with paired absolute differences in TBW of 0·02 (sd 1·33) and 0·00 (sd 1·28) kg, respectively, between BIA and 2H2O. In the larger sample, values for TBW, FFM and fat were 23·8, 32·5 and 10·3 kg, respectively. BIA can be an important tool for assessing body composition in women of reproductive age in rural South Asia where poor maternal nutrition is common.


2019 ◽  
Vol 149 (7) ◽  
pp. 1288-1293 ◽  
Author(s):  
Alissa Steinberg ◽  
Cedric Manlhiot ◽  
Ping Li ◽  
Emma Metivier ◽  
Paul B Pencharz ◽  
...  

ABSTRACT Background Body mass index measures excess weight for size, and does not differentiate between fat mass (FM) and fat-free mass (FFM). Bioelectrical impedance analysis (BIA) is most commonly used to assess FM and FFM as it is simple and inexpensive. Variables from BIA measurements are used in predictive equations to estimate FM and FFM. To date, these equations have not been validated for use in adolescents with severe obesity. Objectives In a cohort of adolescents with severe obesity (SO), a BMI ≥ 120% of the 95th percentile, this study aimed to 1) derive a BIA predictive equation data from air displacement plethysmography (ADP) measurements; 2) reassess the equation in a second validation cohort; and 3) compare the accuracy of existing body composition equations. Methods Adolescents with SO were assessed using ADP and BIA. FM values derived from ADP measurements from the first cohort (n = 27) were used to develop a BIA predictive equation (i.e., Hamilton). A second cohort (n = 65) was used to cross-validate the new and 9 existing BIA predictive equations. Results Ninety-two adolescents (15.8 ± 1.9 y; BMI: 46.1 ± 9.9 kg/m2) participated. Compared with measured FFM using ADP: 1) the Lazzer, Hamilton, Gray, and Kyle equations were without significant bias; 2) the Hamilton and Gray equations had the smallest absolute and relative differences; 3) the Kyle and Gray equations showed the strongest correlation; 4) the Hamilton equation most accurately predicted FFM within ± 5% of measured FFM; and 5) 8 out of 9 equations had similar root mean squared prediction error values (6.03–6.64 kg). Conclusion The Hamilton BIA equation developed in this study best predicted body composition values for groups of adolescents with severe obesity in a validation cohort.


2011 ◽  
Vol 107 (10) ◽  
pp. 1545-1552 ◽  
Author(s):  
Barbara E. Lingwood ◽  
Anne-Martine Storm van Leeuwen ◽  
Angela E. Carberry ◽  
Erin C. Fitzgerald ◽  
Leonie K. Callaway ◽  
...  

Accurate assessment of neonatal body composition is essential to studies investigating neonatal nutrition or developmental origins of obesity. Bioelectrical impedance analysis or bioimpedance analysis is inexpensive, non-invasive and portable, and is widely used in adults for the assessment of body composition. There are currently no prediction algorithms using bioimpedance analysis in neonates that have been directly validated against measurements of fat-free mass (FFM). The aim of the study was to evaluate the use of bioimpedance analysis for the estimation of FFM and percentage of body fat over the first 4 months of life in healthy infants born at term, and to compare these with estimations based on anthropometric measurements (weight and length) and with skinfolds. The present study was an observational study in seventy-seven infants. Body fat content of infants was assessed at birth, 6 weeks, 3 and 4·5 months of age by air displacement plethysmography, using the PEA POD body composition system. Bioimpedance analysis was performed at the same time and the data were used to develop and test prediction equations for FFM. The combination of weight+sex+length predicted FFM, with a bias of < 100 g and limits of agreement of 6–13 %. Before 3 months of age, bioimpedance analysis did not improve the prediction of FFM or body fat. At 3 and 4·5 months, the inclusion of impedance in prediction algorithms resulted in small improvements in prediction of FFM, reducing the bias to < 50 g and limits of agreement to < 9 %. Skinfold measurements performed poorly at all ages.


2006 ◽  
Vol 96 (6) ◽  
pp. 1163-1168 ◽  
Author(s):  
Joanne Hosking ◽  
Brad S. Metcalf ◽  
Alison N. Jeffery ◽  
Linda D. Voss ◽  
Terence J. Wilkin

Foot-to-foot bioelectrical impedance analysis (BIA) is simple and non-invasive, making it particularly suitable for use in children. There is insufficient evidence of the validity of foot-to-foot BIA compared with dual-energy X-ray absorptiometry (DEXA) as the criterion method in healthy young children. Our objective was to assess the validity of foot-to-foot BIA against DEXA in a large cohort of healthy young children. Body composition was measured by foot-to-foot BIA and DEXA in 203 children (mean age 8·9 (sd0·3) years). Bland–Altman and simple linear regression analyses were used to determine agreement between methods. BIA overestimated fat-free mass by a mean of 2·4 % in boys and 5·7 % in girls, while fat mass was underestimated by 6·5 % in boys and 10·3 % in girls. The percentage fat recorded by BIA was, accordingly, also lower than by DEXA (boys 4·8 %; girls 12·8 %). In boys, however, there were correlations between the size of the difference between methods and the size of the measure under consideration such that in smaller boys fat-free mass was underestimated (r − 0·57;P < 0·001) while fat mass and percentage fat were overestimated (r0·74 for fat mass;r0·69 for percentage fat; bothP < 0·001) with the reverse in bigger boys. Mean differences between techniques were greater in the girls than in the boys but in boys only, the direction of the differences was dependent upon the size of the child. Therefore, BIA may be useful for large-scale studies but is not interchangeable with DEXA and should be interpreted with caution in individuals.


Sign in / Sign up

Export Citation Format

Share Document