scholarly journals Development of bioelectrical impedance analysis-based equations for estimation of body composition in postpartum rural Bangladeshi women

2012 ◽  
Vol 109 (4) ◽  
pp. 639-647 ◽  
Author(s):  
Saijuddin Shaikh ◽  
Kerry J. Schulze ◽  
Anura Kurpad ◽  
Hasmot Ali ◽  
Abu Ahmed Shamim ◽  
...  

Equations for predicting body composition from bioelectrical impedance analysis (BIA) parameters are age-, sex- and population-specific. Currently there are no equations applicable to women of reproductive age in rural South Asia. Hence, we developed equations for estimating total body water (TBW), fat-free mass (FFM) and fat mass in rural Bangladeshi women using BIA, with 2H2O dilution as the criterion method. Women of reproductive age, participating in a community-based placebo-controlled trial of vitamin A or β-carotene supplementation, were enrolled at 19·7 (sd 9·3) weeks postpartum in a study to measure body composition by 2H2O dilution and impedance at 50 kHz using multi-frequency BIA (n 147), and resistance at 50 kHz using single-frequency BIA (n 82). TBW (kg) by 2H2O dilution was used to derive prediction equations for body composition from BIA measures. The prediction equation was applied to resistance measures obtained at 13 weeks postpartum in a larger population of postpartum women (n 1020). TBW, FFM and fat were 22·6 (sd 2·7), 30·9 (sd 3·7) and 10·2 (sd 3·8) kg by 2H2O dilution. Height2/impedance or height2/resistance and weight provided the best estimate of TBW, with adjusted R2 0·78 and 0·76, and with paired absolute differences in TBW of 0·02 (sd 1·33) and 0·00 (sd 1·28) kg, respectively, between BIA and 2H2O. In the larger sample, values for TBW, FFM and fat were 23·8, 32·5 and 10·3 kg, respectively. BIA can be an important tool for assessing body composition in women of reproductive age in rural South Asia where poor maternal nutrition is common.

2020 ◽  
Author(s):  
Jenn-Yeu Wang ◽  
Shu- Chin Chen ◽  
Betau Hwang

Abstract Background Maintenance hemodialysis patients often experience protein- calorie malnutrition. Our aim is to evaluate the independent prediction accuracy of bioelectrical impedance analysis derived variables by the measurements of upper arm anthropometry and clinical laboratory indexes for evaluation of nutritional status of hemodialysis patients. Furthermore, the relationship between measurements of upper arm anthropometry and clinical laboratory indexes and cross –sectional evaluation of the prevalence of malnutrition with the use of the norms and thresholds were done. Methods In a cross- sectional survey of 32 stable hemodialysis patients (aged 28 to 82 years) in hemodialysis unit of Taipei Municipal Zhongxiao Hospital, we evaluated measurements of upper arm anthropometry with measurements of single frequency bioelectrical impedance analysis and clinical laboratory indexes. Results The comparisons between measurements of upper arm anthropometry with measurements of single frequency bioelectrical impedance analysis and some of clinical laboratory indexes were statistically significant. This study further found that both mid-arm fat area and triceps skin-fold thickness were independent contributors to percent fat mass after adjustment for body mass index and gender in the multiple regression models. This study also demonstrated that mid-arm muscle circumference, or mid-arm muscle area, or corrected mid-arm muscle area independently predicted height normalized indices of fat-free mass respectively after adjustment for body mass index and gender in the multiple regression models. The prevalence of protein wasting measured by mid-arm muscle circumference (50%) appears to be equivalent to that measured by serum albumin concentration (50%). Conclusions Mid-arm muscle and fat variables by upper arm anthropometry correlated with nutritional variables of single frequency bioelectrical impedance analysis and clinical laboratory indexes. Mid-arm muscle and fat variables by upper arm anthropometry were independent predictors of body composition regarding height-normalized indices of fat-free mass and percent fat mass of hemodialysis patients even after adjustment of gender and BMI.


1992 ◽  
Vol 72 (6) ◽  
pp. 2181-2187 ◽  
Author(s):  
C. S. Fulco ◽  
R. W. Hoyt ◽  
C. J. Baker-Fulco ◽  
J. Gonzalez ◽  
A. Cymerman

This study determined the feasibility of using bioelectrical impedance analysis (BIA) to assess body composition alterations associated with body weight (BW) loss at high altitude. The BIA method was also evaluated relative to anthropometric assessments. Height, BW, BIA, skinfold (SF, 6 sites), and circumference (CIR, 5 sites) measurements were obtained from 16 males (23–35 yr) before, during, and after 16 days of residence at 3,700–4,300 m. Hydrostatic weighings (HW) were performed pre- and postaltitude. Results of 13 previously derived prediction equations using various combinations of height, BW, age, BIA, SF, or CIR measurements as independent variables to predict fat-free mass (FFM), fat mass (FM), and percent body fat (%Fat) were compared with HW. Mean BW decreased from 84.74 to 78.84 kg (P less than 0.01). As determined by HW, FFM decreased by 2.44 kg (P less than 0.01), FM by 3.46 kg (P less than 0.01), and %Fat by 3.02% (P less than 0.01). The BIA and SF methods overestimated the loss in FFM and underestimated the losses in FM and %Fat (P less than 0.01). Only the equations utilizing the CIR measurements did not differ from HW values for changes in FFM, FM, and %Fat. It was concluded that the BIA and SF methods were not acceptable for assessing body composition changes at altitude.


2019 ◽  
Vol 149 (7) ◽  
pp. 1288-1293 ◽  
Author(s):  
Alissa Steinberg ◽  
Cedric Manlhiot ◽  
Ping Li ◽  
Emma Metivier ◽  
Paul B Pencharz ◽  
...  

ABSTRACT Background Body mass index measures excess weight for size, and does not differentiate between fat mass (FM) and fat-free mass (FFM). Bioelectrical impedance analysis (BIA) is most commonly used to assess FM and FFM as it is simple and inexpensive. Variables from BIA measurements are used in predictive equations to estimate FM and FFM. To date, these equations have not been validated for use in adolescents with severe obesity. Objectives In a cohort of adolescents with severe obesity (SO), a BMI ≥ 120% of the 95th percentile, this study aimed to 1) derive a BIA predictive equation data from air displacement plethysmography (ADP) measurements; 2) reassess the equation in a second validation cohort; and 3) compare the accuracy of existing body composition equations. Methods Adolescents with SO were assessed using ADP and BIA. FM values derived from ADP measurements from the first cohort (n = 27) were used to develop a BIA predictive equation (i.e., Hamilton). A second cohort (n = 65) was used to cross-validate the new and 9 existing BIA predictive equations. Results Ninety-two adolescents (15.8 ± 1.9 y; BMI: 46.1 ± 9.9 kg/m2) participated. Compared with measured FFM using ADP: 1) the Lazzer, Hamilton, Gray, and Kyle equations were without significant bias; 2) the Hamilton and Gray equations had the smallest absolute and relative differences; 3) the Kyle and Gray equations showed the strongest correlation; 4) the Hamilton equation most accurately predicted FFM within ± 5% of measured FFM; and 5) 8 out of 9 equations had similar root mean squared prediction error values (6.03–6.64 kg). Conclusion The Hamilton BIA equation developed in this study best predicted body composition values for groups of adolescents with severe obesity in a validation cohort.


2018 ◽  
Vol 17 (4) ◽  
pp. 1125-1131 ◽  
Author(s):  
Huiping Ding ◽  
Shengjin Dou ◽  
Yiqun Ling ◽  
Guopei Zhu ◽  
Qiong Wang ◽  
...  

Aim: This was a prospective investigation of longitudinal body composition changes in patients with nasopharyngeal carcinoma undergoing concurrent chemoradiotherapy (CCRT) and a comparison of the Patient-Generated Subjective Global Assessment (PG-SGA) and the ESPEN (European Society for Clinical Nutrition and Metabolism) diagnostic criteria (EDC) as evaluation methods. Methods: All patients received standard CCRT according to 2 centers’ current practices. Body composition parameters were determined by bioelectrical impedance analysis and obtained weekly from baseline until the end of treatment. The nutritional status of all patients was evaluated by the PG-SGA and EDC. Results: Forty-eight patients were eligible for analysis. Most body composition parameters, including body cell mass, fat mass, fat-free mass, and skeletal mass, as well as body weight, body mass index, and PG-SGA score, significantly decreased during CCRT ( P = .00). The PG-SGA was shown to have better sensitivity than the EDC; however, the 2 different evaluation methods were found to have a perfect concordance at Week 4 and Week 6 (κ = 0.91 and 0.96, P = .00 and .00, respectively). Pearson correlation analyses showed that fat-free mass index and body weight were positively correlated with global quality of life score ( r = 0.81, P = .00; r = 0.78, P = .00, respectively). Conclusions: This study has shown that body composition parameters, especially fat-free mass index, are valuable for diagnosing malnutrition in patients with nasopharyngeal carcinoma receiving CCRT. We recommend that these bioelectrical impedance analysis techniques should be increasingly implemented in nutritional assessments.


2011 ◽  
Vol 107 (10) ◽  
pp. 1545-1552 ◽  
Author(s):  
Barbara E. Lingwood ◽  
Anne-Martine Storm van Leeuwen ◽  
Angela E. Carberry ◽  
Erin C. Fitzgerald ◽  
Leonie K. Callaway ◽  
...  

Accurate assessment of neonatal body composition is essential to studies investigating neonatal nutrition or developmental origins of obesity. Bioelectrical impedance analysis or bioimpedance analysis is inexpensive, non-invasive and portable, and is widely used in adults for the assessment of body composition. There are currently no prediction algorithms using bioimpedance analysis in neonates that have been directly validated against measurements of fat-free mass (FFM). The aim of the study was to evaluate the use of bioimpedance analysis for the estimation of FFM and percentage of body fat over the first 4 months of life in healthy infants born at term, and to compare these with estimations based on anthropometric measurements (weight and length) and with skinfolds. The present study was an observational study in seventy-seven infants. Body fat content of infants was assessed at birth, 6 weeks, 3 and 4·5 months of age by air displacement plethysmography, using the PEA POD body composition system. Bioimpedance analysis was performed at the same time and the data were used to develop and test prediction equations for FFM. The combination of weight+sex+length predicted FFM, with a bias of < 100 g and limits of agreement of 6–13 %. Before 3 months of age, bioimpedance analysis did not improve the prediction of FFM or body fat. At 3 and 4·5 months, the inclusion of impedance in prediction algorithms resulted in small improvements in prediction of FFM, reducing the bias to < 50 g and limits of agreement to < 9 %. Skinfold measurements performed poorly at all ages.


2006 ◽  
Vol 96 (6) ◽  
pp. 1163-1168 ◽  
Author(s):  
Joanne Hosking ◽  
Brad S. Metcalf ◽  
Alison N. Jeffery ◽  
Linda D. Voss ◽  
Terence J. Wilkin

Foot-to-foot bioelectrical impedance analysis (BIA) is simple and non-invasive, making it particularly suitable for use in children. There is insufficient evidence of the validity of foot-to-foot BIA compared with dual-energy X-ray absorptiometry (DEXA) as the criterion method in healthy young children. Our objective was to assess the validity of foot-to-foot BIA against DEXA in a large cohort of healthy young children. Body composition was measured by foot-to-foot BIA and DEXA in 203 children (mean age 8·9 (sd0·3) years). Bland–Altman and simple linear regression analyses were used to determine agreement between methods. BIA overestimated fat-free mass by a mean of 2·4 % in boys and 5·7 % in girls, while fat mass was underestimated by 6·5 % in boys and 10·3 % in girls. The percentage fat recorded by BIA was, accordingly, also lower than by DEXA (boys 4·8 %; girls 12·8 %). In boys, however, there were correlations between the size of the difference between methods and the size of the measure under consideration such that in smaller boys fat-free mass was underestimated (r − 0·57;P < 0·001) while fat mass and percentage fat were overestimated (r0·74 for fat mass;r0·69 for percentage fat; bothP < 0·001) with the reverse in bigger boys. Mean differences between techniques were greater in the girls than in the boys but in boys only, the direction of the differences was dependent upon the size of the child. Therefore, BIA may be useful for large-scale studies but is not interchangeable with DEXA and should be interpreted with caution in individuals.


1998 ◽  
Vol 32 (1) ◽  
pp. 65-71 ◽  
Author(s):  
K. Rutter ◽  
L. Hennoste ◽  
L. C. Ward ◽  
B. H. Cornish ◽  
B. J. Thomas

Bioelectrical impedance analysis (BIA) was used to assess body composition in rats fed on either standard laboratory diet or on a high-fat diet designed to induce obesity. Bioelectrical impedance analysis predictions of total body water and thus fat-free mass (FFM) for the group mean values were generally within 5% of the measured values by tritiated water (3H2O) dilution. The limits of agreement for the procedure were, however, large, approximately ±25%, limiting the applicability of the technique for measurement of body composition in individual animals.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1689-1689
Author(s):  
Rawiwan Sirirat ◽  
Celine Heskey ◽  
Christine Wilson ◽  
Edward Bitok ◽  
Julie Jones ◽  
...  

Abstract Objectives The accurate measurement of body composition is important in both research and clinical practice. The aim of this study was to compare the InBody relative to the BOD POD®. The latter is widely recognized as one of the most accurate methods to measure human body composition. Methods In the context of a clinical trial of 35 free-living non-athletic individuals [80% F, ages 40–69 years, BMI 25–34 kg/m2], we compared body composition measurements utilizing Bioelectrical Impedance Analysis (BIA) and Air Displacement Plethysmography (ADP). ADP was conducted in a BOD POD® (Cosmed USA Inc., Concord, CA, USA) and BIA measured using InBody 570 (In Body, Cerritos, CA, USA). Body measurements included total body weight, fat mass and fat-free mass which were obtained in kilograms following manufacturer instructions. Spearman's rank (rs) and Pearson correlations (r) were used to evaluate the agreement between the two instruments. Results The BOD POD® and InBody measurements were strongly correlated. Correlation was strongest for total body weight (rs (35) = .99, P &lt; .0001), followed by fat mass (r (35) = .93, P &lt; .0001). The lowest correlation was observed for fat-free mass (rs (35) = .79, P &lt; .0001). Conclusions The InBody 570 is reliable and compares favorably to the BOD POD®. Hence, it can be used in clinical settings and epidemiological studies as a practical and relatively inexpensive alternative to the BodPod and dual-energy x-ray absorptiometry (DEXA). Funding Sources Nutrition Research Center, School of Public Health, Loma Linda University, Loma Linda, CA, USA.


Author(s):  
Giada Ballarin ◽  
Luca Scalfi ◽  
Fabiana Monfrecola ◽  
Paola Alicante ◽  
Alessandro Bianco ◽  
...  

Few data are available on the body composition of pole dancers. Bioelectrical impedance analysis (BIA) is a method that is used to estimate fat-free mass (FFM) and fat mass (FM), while raw BIA variables, such as the impedance ratio (IR) and phase angle (PhA), are markers of body cell mass and the ratio between extracellular and total body water. The aim of this study was to evaluate the body composition of pole dancers compared to controls, in particular, those raw BIA variables that are considered as markers of muscle composition. Forty female pole dancers and 59 controls participated in the study. BIA was performed on the whole body and upper and lower limbs, separately, at 5, 50, 100 and 250 kHz. The FFM, FFM index, FM and body fat percentage (BF%) were predicted. The bioelectrical impedance indexes IR and PhA were also considered. Pole dancers exhibited higher FFMI and BI indexes and lower BF%. PhA was greater and IRs were smaller in pole dancers than in controls for the whole body and upper limbs. Considering the training level, FFM, whole-body IR and PhA were higher in the professionals than non-professionals. Raw BIA variables significantly differed between the pole dancers and controls, suggesting a higher BCM; furthermore, practicing pole dancing was associated with a greater FFM and lower FM.


Author(s):  
Francesco Campa ◽  
Catarina N. Matias ◽  
Pantelis T. Nikolaidis ◽  
Henry Lukaski ◽  
Jacopo Talluri ◽  
...  

The accurate body composition assessment comprises several variables, causing it to be a time consuming evaluation as well as requiring different and sometimes costly measurement instruments. The aim of this study was to develop new equations for the somatotype prediction, reducing the number of normal measurements required by the Heath and Carter approach. A group of 173 male soccer players (age, 13.6 ± 2.2 years, mean ± standard deviation; body mass index, BMI, 19.9 ± 2.5 kg/m2), members of the academy of a professional Italian soccer team participating in the first division (Serie A), participated in this study. Bioelectrical impedance analysis (BIA) was performed using the single frequency of 50 kHz and fat-free mass (FFM) was calculated using a BIA specific, impedance based equation. Somatotype components were estimated according to the Heath-Carter method. The participants were randomly split into development (n = 117) and validation groups (n = 56). New anthropometric and BIA based models were developed (endomorphy = −1.953 − 0.011 × stature2/resistance + 0.135 × BMI + 0.232 × triceps skinfold, R2 = 0.86, SEE = 0.28; mesomorphy = 6.848 + 0.138 × phase angle + 0.232 × contracted arm circumference + 0.166 × calf circumference − 0.093 × stature, R2 = 0.87, SEE = 0.40; ectomorphy = −5.592 − 38.237 × FFM/stature + 0.123 × stature, R2 = 0.86, SEE = 0.37). Cross validation revealed R2 of 0.84, 0.80, and 0.87 for endomorphy, mesomorphy, and ectomorphy, respectively. The new proposed equations allow for the integration of the somatotype assessment into BIA, reducing the number of collected measurements, the instruments used, and the time normally required to obtain a complete body composition analysis.


Sign in / Sign up

Export Citation Format

Share Document