Human muscle fatigue after glycogen depletion: a 31P magnetic resonance study

1992 ◽  
Vol 73 (1) ◽  
pp. 75-81 ◽  
Author(s):  
L. A. Bertocci ◽  
J. L. Fleckenstein ◽  
J. Antonio

To differentiate the effects of high energy phosphates, pH, and [H2PO4-] on skeletal muscle fatigue, intracellular acidosis during handgrip exercise was attenuated by prolonged submaximal exercise. Healthy human subjects (n = 6) performed 5-min bouts of maximal rhythmic handgrip (RHG) before (CONTROL) and after prolonged (60-min) handgrip exercise (ATTEN-EX) designed to attenuate lactic acidosis in active muscle by partially depleting muscle glycogen. Concentrations of free intracellular phosphocreatine ([PCr]), adenosine triphosphate ([ATP]), and orthophosphate ([P(i)]) and pH were measured by 31P nuclear magnetic resonance spectroscopy and used to calculate adenosine diphosphate [ADP], [H2PO4-], and [HPO4(2-)]. Handgrip force output was measured with a dynamometer, and fatigue was determined by loss of maximal contractile force. After ATTEN-EX, the normal exercise-induced muscle acidosis was reduced. At peak CONTROL RHG, pH fell to 6.3 +/- 0.1 (SE) and muscle fatigue was correlated with [PCr] (r = 0.83), [P(i)] (r = 0.82), and [H2PO4-] (r = 0.81); [ADP] was 22.0 +/- 5.7 mumol/kg. At peak RHG after ATTEN-EX, pH was 6.9 +/- 0.1 and [ADP] was 116.1 +/- 18.2 mumol/kg, although [PCr] and [P(i)] were not different from CONTROL RHG (P greater than 0.05). After ATTEN-EX, fatigue correlated most closely with [ADP] (r = 0.84). The data indicate that skeletal muscle fatigue 1) is multifactorial, 2) can occur without decreased pH or increased [H2PO4-], and 3) is correlated with [ADP] after exercise-induced glycogen depletion.

Perfusion ◽  
1998 ◽  
Vol 13 (5) ◽  
pp. 328-333 ◽  
Author(s):  
D NF Harris ◽  
J A Wilson ◽  
S D Taylor-Robinson ◽  
K M Taylor

Hypothermic cardiopulmonary bypass (CPB) is associated with a high incidence of neuropsychological defects, marked cerebral swelling immediately after surgery and jugular bulb desaturation during rewarming. This suggests cerebral ischaemia may occur, but evidence is indirect. We studied four patients with 31P magnetic resonance spectroscopy (MRS) and four with 1H MRS before and immediately after coronary surgery. There was no visible lactate in 1H MR spectra. In 31P MR spectra, the ratio of phosphocreatine to adenosine triphosphate was maintained (before: 2.13 ± 0.86 vs after: 2.57 ± 1.31; mean ± 1 SD) and there was no intracellular acidosis (intracellular pH: 7.1 ± 0.04 vs 7.16 ± 0.08), while phosphocreatine/inorganic phosphate was increased immediately after the operation (2.92 ± 0.37 vs 6.39 ± 2.67, p = 0.03). This suggests rebound replacement of energy stores following recovery from temporary cerebral ischaemia during CPB: intra-operative studies would be needed to test this hypothesis further.


2018 ◽  
Vol 33 (6) ◽  
pp. 1197-1205 ◽  
Author(s):  
Renata Luri Toma ◽  
Murilo Xavier Oliveira ◽  
Ana Cláudia Muniz Renno ◽  
E-Liisa Laakso

1996 ◽  
Vol 81 (5) ◽  
pp. 2221-2228 ◽  
Author(s):  
Jean-François Toussaint ◽  
Kenneth K. Kwong ◽  
Fidelis M’Kparu ◽  
Robert M. Weisskoff ◽  
Paul J. Laraia ◽  
...  

Toussaint, Jean-François, Kenneth K. Kwong, Fidelis M’Kparu, Robert M. Weisskoff, Paul J. LaRaia, and Howard L. Kantor.Interrelationship of oxidative metabolism and local perfusion demonstrated by NMR in human skeletal muscle. J. Appl. Physiol. 81(5): 2221–2228, 1996.—Using nuclear magnetic resonance (NMR), we have examined the relationship of high-energy phosphate metabolism and perfusion in human soleus and gastrocnemius muscles. With31P-NMR spectroscopy, we monitored phosphocreatine (PCr) decay and recovery in eight normal volunteers and four heart failure patients performing ischemic plantar flexion. By using echo-planar imaging, perfusion was independently measured by a local [inversion-recovery (T1-flow)] and a regional technique (NMR-plethysmography). After correction for its pH dependence, PCr recovery time constant is 27.5 ± 8.0 s in normal volunteers, with mean flow 118 ± 75 (soleus and gastrocnemius T1-flow) and 30.2 ± 9.7 ml ⋅ 100 ml−1 ⋅ min−1(NMR-plethysmography-flow). We demonstrate a positive correlation between PCr time constant and local perfusion given by y = 50 − 0.15 x( r 2 = 0.68, P = 0.01) for the 8 normal subjects, and y = 64 − 0.24 x( r 2 = 0.83, P = 0.0001) for the 12 subjects recruited in the study. Regional perfusion techniques also show a significant but weaker correlation. Using this totally noninvasive method, we conclude that aerobic ATP resynthesis is related to the magnitude of perfusion, i.e., O2availability, and demonstrate that magnetic resonance imaging and magnetic resonance spectroscopy together can accurately assess muscle functional status.


2008 ◽  
Vol 24 (3) ◽  
pp. 425-431 ◽  
Author(s):  
Ernesto Cesar Pinto Leal Junior ◽  
Rodrigo Álvaro Brandão Lopes-Martins ◽  
Adriane Aver Vanin ◽  
Bruno Manfredini Baroni ◽  
Douglas Grosselli ◽  
...  

1988 ◽  
Vol 8 (6) ◽  
pp. 816-821 ◽  
Author(s):  
Kathryn Allen ◽  
Albert L. Busza ◽  
H. Alan Crockard ◽  
Richard S. J. Frackowiak ◽  
David G. Gadian ◽  
...  

CBF has been measured with the hydrogen clearance technique in the two cerebral hemispheres of the gerbil under halothane anaesthesia. At the same time, intracellular pH and the concentrations of lactate and high-energy phosphates were measured in the brain using 1H and 31P nuclear magnetic resonance spectroscopy. Flow and metabolism have been followed during either a 15- or a 30-min ischaemic period (induced by bilateral carotid occlusion) and for up to 1 h of recovery. There was no significant difference between the flow characteristics of the two experimental groups. High-energy phosphate levels and pH returned to control within ∼20 min of the end of the ischaemic period. Lactate clearance, following a 30-min occlusion, was slower than the recovery of pH. The concentration of free ADP, calculated from the creatine kinase equilibrium, was lower during the recovery phase than under control conditions.


Sign in / Sign up

Export Citation Format

Share Document