Role of pulmonary blood flow in postpneumonectomy lung growth

1992 ◽  
Vol 73 (6) ◽  
pp. 2448-2451 ◽  
Author(s):  
J. T. McBride ◽  
K. K. Kirchner ◽  
G. Russ ◽  
J. Finkelstein

To study the influence of blood flow on postpneumonectomy lung growth, we banded the left caudal lobe pulmonary artery of eight ferrets in such a way that blood flow to the caudal lobe did not increase when the right lung was excised 1 wk later. The fraction of the cardiac output received by the right lung before pneumonectomy was therefore directed entirely to the left cranial lobe. Three weeks after pneumonectomy the weight, volume, and protein and DNA contents of the two lobes of the left lung were measured and compared with those of five unoperated animals and eight animals after right pneumonectomy alone. Although its perfusion did not increase after pneumonectomy, the left caudal lobe of banded animals participated in compensatory growth, increasing in weight and protein and DNA contents. Although the cranial lobe of banded animals received 25% more of the cardiac output than the same lobe in pneumonectomized animals, cranial lobe volume and protein and DNA contents in the two groups were similar. Caudal lobes were smaller in banded than in simple pneumonectomized animals and tended to contain less protein, whereas the cranial lobes tended to be heavier. We conclude that increased pulmonary perfusion is not necessary for compensatory lung growth in adult ferrets, but it may modify this response.

1992 ◽  
Vol 73 (4) ◽  
pp. 1291-1296 ◽  
Author(s):  
L. E. Olson ◽  
R. L. Wardle

We examined whether wedging a catheter (0.5 cm OD) into a subsegmental airway in dog (n = 6) or pig lungs (n = 5) and increasing pressure in the distal lung segment affected pulmonary blood flow. Dogs and pigs were anesthetized and studied in the prone position. Pulmonary blood flow was measured by injecting radiolabeled microspheres (15 microns diam) into the right atrium when airway pressure (Pao) was 0 cmH2O and pressure in the segment distal to the wedged catheter (Ps) was 0, 5, or 15 cmH2O and when Pao = Ps = 15 cmH2O. The lungs were excised, air-dried, and sectioned. Blood flow per gram dry weight normalized to cardiac output to the right or left lung, as appropriate, was calculated for the test segment, a control segment in the opposite lung corresponding anatomically to the test segment, the remainder of the lung containing the test segment (test lung), and the remainder of the lung containing the control segment (control lung). The presence of the catheter reduced blood flow in the test segment compared with that in the control segment and in the test lung. Blood flow was not affected by increasing pressure in the test segment. We conclude that, in studies designed to measure collateral ventilation in dog lungs, the presence of the wedged catheter is likely to have a greater effect on blood flow than the increase in pressure associated with measuring collateral airway resistance.


2006 ◽  
Vol 101 (5) ◽  
pp. 1451-1465 ◽  
Author(s):  
Deokiee Chon ◽  
Kenneth C. Beck ◽  
Ranae L. Larsen ◽  
Hidenori Shikata ◽  
Eric A. Hoffman

ECG-triggered computed tomography (CT) was used during passage of iodinated contrast to determine regional pulmonary blood flow (PBF) in anesthetized prone/supine dogs. PBF was evaluated as a function of height within the lung (supine and prone) as a function of various normalization methods: raw unit volume data (PBFraw) or PBF normalized to regional fraction air (PBFair), fractional non-air (PBFgm), or relative number of alveoli (PBFalv). The coefficient of variation of PBFraw, PBFair, PBFalv, and PBFgm ranged between 30 and 50% in both lungs and both body postures. The position of maximal flow along the height of the lung (MFP) was calculated for PBFraw, PBFair, PBFalv, and PBFgm. Only PBFgm showed a significantly different MFP height supine vs. prone (whole lung: 2.60 ± 1.08 cm supine vs. 5.08 ± 1.61 cm prone, P < 0.01). Mean slopes (ml/min/gm water content/cm) of PBFgm were steeper supine vs. prone in the right (RL) but not left lung (LL) (RL: −0.65 ± 0.29 supine vs. −0.26 ± 0.25 prone, P < 0.02; LL: −0.47 ± 0.21 supine vs. −0.32 ± 0.26 prone, P > 0.10). Mean slopes of PBFgm vs. vertical lung height were not different prone vs. supine above this vertical height of MFP (VMFP), but PBFgm slopes were steeper in the supine position below the VMFP in the RL. We conclude that PBFgm distribution was posture dependent in RL but not LL. Support of the heart may play a role. We demonstrate that normalization factors can lead to differing attributions of gravitational effects on PBF heterogeneity.


1998 ◽  
Vol 84 (6) ◽  
pp. 2010-2019 ◽  
Author(s):  
Christopher M. Mann ◽  
Karen B. Domino ◽  
Sten M. Walther ◽  
Robb W. Glenny ◽  
Nayak L. Polissar ◽  
...  

We used fluorescent-labeled microspheres in pentobarbital-anesthetized dogs to study the effects of unilateral alveolar hypoxia on the pulmonary blood flow distribution. The left lung was ventilated with inspired O2 fraction of 1.0, 0.09, or 0.03 in random order; the right lung was ventilated with inspired O2 fraction of 1.0. The lungs were removed, cleared of blood, dried at total lung capacity, then cubed to obtain ∼1,500 small pieces of lung (∼1.7 cm3). The coefficient of variation of flow increased ( P < 0.001) in the hypoxic lung but was unchanged in the hyperoxic lung. Most (70–80%) variance in flow in the hyperoxic lung was attributable to structure, in contrast to only 30–40% of the variance in flow in the hypoxic lung ( P < 0.001). When adjusted for the change in total flow to each lung, 90–95% of the variance in the hyperoxic lung was attributable to structure compared with 70–80% in the hypoxic lung ( P < 0.001). The hilar-to-peripheral gradient, adjusted for change in total flow, decreased in the hypoxic lung ( P = 0.005) but did not change in the hyperoxic lung. We conclude that hypoxic vasoconstriction alters the regional distribution of flow in the hypoxic, but not in the hyperoxic, lung.


1991 ◽  
Vol 70 (1) ◽  
pp. 135-142 ◽  
Author(s):  
J. I. Carlin ◽  
C. C. Hsia ◽  
S. S. Cassidy ◽  
M. Ramanathan ◽  
P. S. Clifford ◽  
...  

Although the left lung constitutes 42% of the total by weight and volume in dogs, carbon monoxide diffusing capacity (DL) after left pneumonectomy in adults falls less than 30% at rest, indicating a significant increase of DL in the remaining lung. DL normally increases during exercise, presumably by recruitment of alveolar capillaries and surface area as lung volume (Vs) and pulmonary blood flow (Qc) increase. We asked whether the increase of DL in the remaining lung after pneumonectomy in adult dogs could be explained by this kind of passive recruitment by the increased volume and Qc in the remaining lung. We measured the relationship between DL and Qc with a rebreathing technique at increasing treadmill loads in adult foxhounds, before and 6 mo after left pneumonectomy, and the relationship between DL and Vs by the same technique under anesthesia as Vs was expanded. DL was reduced by 29.1% at rest and 26.5% with heavy exercise after left pneumonectomy, indicating either recruitment or new growth in the right lung. With the assumption that the right lung normally receives 58% of the Qc and contains 58% of the DL, DL of the right lung increased with Qc in accordance with the following relationships before and after left pneumonectomy: right lung DL (before pneumonectomy) = 6.44 + 2.40(Qc) (r = 0.963) and right lung DL (after pneumonectomy) = 7.51 + 1.75(Qc) (r = 0.958). Only approximately 7% of the increase in DL from rest to peak exercise could be attributed to the increase in Vs during exercise before pneumonectomy and approximately 15% after pneumonectomy.(ABSTRACT TRUNCATED AT 250 WORDS)


1965 ◽  
Vol 6 (1) ◽  
pp. 40-50 ◽  
Author(s):  
Hideo UEDA ◽  
Shigekoto KAIHARA ◽  
Masahiro IIO

1992 ◽  
Vol 12 (2) ◽  
pp. 230-237 ◽  
Author(s):  
Marleen J. Verhaegen ◽  
Michael M. Todd ◽  
David S. Warner ◽  
Bruce James ◽  
Julie B. Weeks

Cerebral blood flow was measured by the H2 clearance method 30 and 60 min after the implantation of 300, 250, 125, or 50 μm diameter platinum–iridium electrodes 2 mm deep into the right parietal cortex of normothermic, normocarbic halothane-anesthetized rats. Another group of animals had 50 μm electrodes inserted 1 mm. In all animals, the presence or absence of a wave of spreading depression (SD) was noted at the time of implantation, with recordings made with glass micropipettes. H2 flow values were compared with those measured in gray matter from the same anatomical region (but from different rats), using [3H]nicotine. The incidence of SD ranged from 60% following insertion of 300 μm electrodes to 0% with 50 μm electrodes. H2 clearance flows also varied with electrode size, from 77 ± 21 ml 100 g−1 min−1 (mean ± standard deviation) with 300 μm electrodes to 110 ± 31 and 111 ± 16 ml 100 g−1 min−1 with 125 and 50 μm electrodes, respectively (insertion depth of 2 mm). A CBF value of 155 ± 60 ml 100 g−1 min−1 was obtained with 50 μm electrodes inserted only 1 mm. Cortical gray matter blood flow measured with [3H]nicotine was 154 ± 35 ml 100 g−1 min−1. When the role of SD in subsequent flow measurements was examined, there was a gradual increase in CBF between 30 and 60 min after electrode insertion in those animals with SD, while no such change was seen in rats without SD. These results indicate that the choice of electrode size and implantation depth influences the measurement of CBF by H2 clearance. CBF values equivalent to those obtained with isotopic techniques can be acutely obtained with small (50 μm diameter) electrodes inserted 1 mm into the cortex. While the occurrence of SD does influence CBF in the period immediately after implantation, a relationship between electrode size and measured flow is present that is independent of SD.


1972 ◽  
Vol 84 (3) ◽  
pp. 371-376 ◽  
Author(s):  
Elmer Treat ◽  
Harvey Ulano ◽  
Marc Pfeffer ◽  
Walter Massion ◽  
Linda L. Shanbour ◽  
...  

1986 ◽  
Vol 71 (s15) ◽  
pp. 36P-36P ◽  
Author(s):  
A.H. Kendrick ◽  
A. Rozkovec ◽  
M. Papouchado ◽  
J. West ◽  
J.E. Bees ◽  
...  

PEDIATRICS ◽  
1971 ◽  
Vol 47 (5) ◽  
pp. 870-879
Author(s):  
Zuhdi Lababidi ◽  
D. A. Ehmke ◽  
Robert E. Durnin ◽  
Paul E. Leaverton ◽  
Ronald M. Lauer

In 20 children without shunts or valvular insufficiency, duplicate dye dilution and impedance cardiac outputs (ICO) were carried out. The duplicate dye dilutions had a standard deviation 0.259 L/min/m2, while duplicate ICO had a standard deviation 0.192 L/min/m2 (F = 1.82, p &lt; 0.05). Of 53 sequential estimates, cardiac outputs measured by both indicator dye dilution and ICO had a 5.5% mean difference. In 21 subjects with left to right shunts, the ICO related well with pulmonary blood flow (r = 0.92) rather than systemic flow (r = 0.21). In 13 subjects with aortic insufficiency, sequential Fick and ICO had a 50% mean difference; the impedance measurement was found to be higher in every case. These data indicate that the impedance cardiograph can provide a noninvasive measure of cardiac output when there are no shunts or valvular insufficiencies. In subjects with left to right shunts the impedance cardiograph provides a measure of the pulmonary blood flow. When aortic insufficiency exists the impedance cardiograph is distorted such that it is consistently higher than Fick cardiac output.


Sign in / Sign up

Export Citation Format

Share Document