Coupling of muscle phosphorylation potential to glycolysis during work after short-term training

1994 ◽  
Vol 76 (6) ◽  
pp. 2586-2593 ◽  
Author(s):  
J. Cadefau ◽  
H. J. Green ◽  
R. Cusso ◽  
M. Ball-Burnett ◽  
G. Jamieson

To examine whether the metabolic adaptations to short-term training are expressed over a range of submaximal levels of mitochondrial respiration, seven untrained male subjects [maximal O2 uptake (VO2max) = 45.9 +/- 1.9 (SE) ml.kg-1.min-1] performed a progressive three-stage protocol of cycle exercise at 60% (20 min), 79% (20 min), and 92% (11 min) of pretraining VO2max before and after training. Training consisted of 5–6 days of cycling for 2 h/day at 65% VO2max. Muscle tissue rapidly obtained from the vastus lateralis by needle biopsy indicated that training blunted (P < 0.05) the increase in lactate observed at 60% (23.4 +/- 6.5 vs. 12.4 +/- 2.9 mmol/kg dry wt), 79% (48.9 +/- 5.1 vs. 25.6 +/- 5.2 mmol/kg dry wt), and 92% (68.3 +/- 6.4 vs. 41.5 +/- 6.5 mmol/kg dry wt) of VO2max. Training also resulted in a higher phosphocreatine and lower creatine and P(i) concentrations at both 79% (P < 0.05) and 92% (P < 0.05) of VO2max and higher muscle glycogen levels (P < 0.05). These changes were accompanied by small but significant reductions (P < 0.05) in O2 uptake at the two higher exercise intensities. Given that the lactate-to-pyruvate ratio and the calculated free ADP and AMP were also reduced (P < 0.05), it would appear that short-term training results in a tighter metabolic control over a range of mitochondrial respiratory rates.

2010 ◽  
Vol 299 (6) ◽  
pp. E1053-E1060 ◽  
Author(s):  
Joachim Nielsen ◽  
Charlotte Suetta ◽  
Lars G. Hvid ◽  
Henrik D. Schrøder ◽  
Per Aagaard ◽  
...  

Previous studies have shown that skeletal muscle glycogen and mitochondria are distributed in distinct subcellular localizations, but the role and regulation of these subcellular localizations are unclear. In the present study, we used transmission electron microscopy to investigate the effect of disuse and aging on human skeletal muscle glycogen and mitochondria content in subsarcolemmal (SS), intermyofibrillar (IMF), and intramyofibrillar (intra) localizations. Five young (∼23 yr) and five old (∼66 yr) recreationally active men had their quadriceps muscle immobilized for 2 wk by whole leg casting. Biopsies were obtained from m. vastus lateralis before and after the immobilization period. Immobilization induced a decrement of intra glycogen content by 54% ( P < 0.001) in both age groups and in two ultrastructurally distinct fiber types, whereas the content of IMF and SS glycogen remained unchanged. A localization-dependent decrease ( P = 0.03) in mitochondria content following immobilization was found in both age groups, where SS mitochondria decreased by 33% ( P = 0.02), superficial IMF mitochondria decreased by 20% ( P = 0.05), and central IMF mitochondria remained unchanged. In conclusion, our findings demonstrate a localization-dependent adaptation to immobilization in glycogen and mitochondria content of skeletal muscles of both young and old individuals. Specifically, this suggests that short-term disuse preferentially affects glycogen particles located inside the myofibrils and that mitochondria volume plasticity can be dependent on the distance to the fiber border.


1999 ◽  
Vol 277 (1) ◽  
pp. E39-E48 ◽  
Author(s):  
H. Green ◽  
S. Grant ◽  
E. Bombardier ◽  
D. Ranney

To investigate the hypothesis that training-induced increases in muscle mitochondrial potential are not obligatory to metabolic adaptations observed during submaximal exercise, regardless of peak aerobic power (V˙o 2 peak) of the subjects, a short-term training study was utilized. Two groups of untrained male subjects ( n = 7/group), one with a high (HI) and the other with a low (LO)V˙o 2 peak(means ± SE; 51.4 ± 0.90 vs. 41.0 ± 1.3 ml ⋅ kg−1 ⋅ min−1; P< 0.05), cycled for 2 h/day at 66–69% ofV˙o 2 peak for 6 days. Muscle tissue was extracted from vastus lateralis at 0, 3, and 30 min of standardized cycle exercise before training (0 days) and after 3 and 6 days of training and analyzed for metabolic and enzymatic changes. During exercise after 3 days of training in the combined HI + LO group, higher ( P < 0.05) concentrations (mmol/kg dry wt) of phosphocreatine (40.5 ± 3.4 vs. 52.2 ± 4.2) and lower ( P < 0.05) concentrations of Pi (61.5 ± 4.4 vs. 53.3 ± 4.4), inosine monophosphate (0.520 ± 0.19 vs. 0.151 ± 0.05), and lactate (37.9 ± 5.5 vs. 22.8 ± 4.8) were observed. These changes were also accompanied by reduced levels of calculated free ADP, AMP, and Pi. All adaptations were fully expressed by 3 min of exercise and by 3 days of training and were independent of initialV˙o 2 peak levels. Moreover, maximal activity of citrate synthase, a measure of mitochondrial capacity, was only increased with 6 days of training (5.71 ± 0.29 vs. 7.18 ± 0.37 mol ⋅ kg protein−1 ⋅ h−1; P < 0.05). These results demonstrate that metabolic adaptations to prolonged exercise occur within the first 3 days of training and during the non-steady-state period. Moreover, neither time course nor magnitude of metabolic adaptations appears to depend on increases in mitochondrial potential or on initial aerobic power.


1995 ◽  
Vol 78 (1) ◽  
pp. 138-145 ◽  
Author(s):  
H. J. Green ◽  
S. Jones ◽  
M. Ball-Burnett ◽  
B. Farrance ◽  
D. Ranney

In previous research we established using a short-term (5–7 days) training model that increases in muscle oxidative potential are not a prerequisite for the characteristic energy metabolic adaptations (lower lactate, glycogen depletion, and phosphocreatine hydrolysis) observed during prolonged exercise. To investigate whether increased muscle aerobic potential further potentiates the metabolic adaptive response, seven healthy male volunteers [maximal O2 uptake (VO2max) = 45.1 +/- 1.1 (SE) ml.kg-1.min-1] engaged in an 8-wk training program consisting of 2 h of cycle exercise at 62% of pretraining VO2max 5–6 times/wk. Analysis of tissue samples obtained from the vastus lateralis after 60 min of exercise revealed that by 4 wk of training muscle lactate concentration, phosphocreatine hydrolysis, and glycogen depletion were depressed (all P < 0.05). Further training for 4 wk had no additional effect (P < 0.05). The ratio of fructose 6-phosphate to fructose 1,6-phosphate, an index of phosphofructokinase activity, was not altered with training. Muscle oxidative potential as estimated from the maximal activity of succinic dehydrogenase increased by 31% by 4 wk of training (P <0.05) before plateauing during the final 4 wk of training. The increase in VO2max of 15.6% (P < 0.05) noted with training was also primarily expressed during the initial 4 wk. O2 uptake during submaximal exercise was unchanged. Because the metabolic response was similar in magnitude to that previously observed with short-term training, we conclude that, at least for the conditions of this study, the development of increased muscle aerobic potential is of minimal consequence on the magnitude of the energy metabolic adaptations examined.


1996 ◽  
Vol 270 (2) ◽  
pp. E328-E335 ◽  
Author(s):  
A. Chesley ◽  
G. J. Heigenhauser ◽  
L. L. Spriet

The purpose of this study was to examine the regulation (hormonal, substrate, and allosteric) of muscle glycogen phosphorylase (Phos) activity and glycogenolysis after short-term endurance training. Eight untrained males completed 6 days of cycle exercise (2 h/day) at 65% of maximal O2 uptake (Vo2max). Before and after training subjects cycled for 15 min at 80% of Vo2max, and muscle biopsies and blood samples were obtained at 0 and 30 s, 7.5 and 15 min, and 0, 5, 10, and 15 min of exercise. Vo2max was unchanged with training but citrate synthase (CS) activity increased by 20%. Muscle glycogenolysis was reduced by 42% during the 15-min exercise challenge following training (198.8 +/- 36.9 vs. 115.4 +/- 25.1 mmol/kg dry muscle), and plasma epinephrine was blunted at 15 min of exercise. The Phos a mole fraction was unaffected by training. Muscle phosphocreatine utilization and free Pi and AMP accumulations were reduced with training at 7.5 and 15 min of exercise. It is concluded that posttransformational control of Phos, exerted by reductions in substrate (free Pi) and allosteric modulator (free AMP) contents, is responsible for a blunted muscle glycogenolysis after 6 days of endurance training. The increase in CS activity suggests that the reduction of muscle glycogenolysis was due in part to an enhanced mitochondrial potential.


1989 ◽  
Vol 66 (1) ◽  
pp. 72-78 ◽  
Author(s):  
L. Martineau ◽  
I. Jacobs

The effects of intramuscular glycogen availability on human temperature regulation were studied in eight seminude subjects immersed in 18 degrees C water for 90 min or until rectal temperature (Tre) decreased to 35.5 degrees C. Each subject was immersed three times over a 3-wk period. Each immersion followed 2.5 days of a specific dietary and/or exercise regimen designed to elicit low (L), normal (N), or high (H) glycogen levels in large skeletal muscle groups. Muscle glycogen concentration was determined in biopsies taken from the vastus lateralis muscle before and after each immersion. Intramuscular glycogen concentration before the immersion was significantly different among the L, N, and H trials (P less than 0.01), averaging 247 +/- 15, 406 +/- 23, and 548 +/- 42 (SE) mmol glucose units.kg dry muscle-1, respectively. The calculated metabolic heat production during the first 30 min of immersion was significantly lower during L compared with N or H (P less than 0.05). The rate at which Tre decreased was more rapid during the L immersion than either N or H (P less than 0.05), and the time during the immersion at which Tre first began to decrease also appeared sooner during L than N or H. The results suggest that low skeletal muscle glycogen levels are associated with more rapid body cooling during water immersion in humans. Higher than normal muscle glycogen levels, however, do not increase cold tolerance.


1991 ◽  
Vol 70 (1) ◽  
pp. 8-14 ◽  
Author(s):  
W. J. Kraemer ◽  
J. F. Patton ◽  
H. G. Knuttgen ◽  
C. J. Hannan ◽  
T. Kettler ◽  
...  

Plasma proenkephalin peptide F immunoreactivity and catecholamines were examined on separate days in nine healthy males before and after maximal exercise to exhaustion at four intensities [36, 55, 73, and 100% of maximal leg power (MLP)] by use of a computerized cycle ergometer. The mean duration of 36, 55, 73, and 100% MLP was 3.31, 0.781, 0.270, and 0.1 min, respectively. All intensities were greater than those eliciting peak O2 uptake for the individual subjects. Blood samples were obtained before, immediately after exercise, and 5 and 15 min after exercise. Significant (P less than 0.05) increases in plasma peptide F immunoreactivity (i.e., from mean resting value of 0.18 to 0.43 pmol/ml) were observed immediately after exercise at 36% MLP. Significant increases in plasma epinephrine were observed immediately after exercise at 36% MLP (i.e., from mean resting value of 2.22 to 3.11 pmol/ml) and 55% MLP (i.e., from mean resting value of 1.67 to 2.98 pmol/ml) and 15 min after exercise at 100% MLP (i.e., from mean resting value of 1.92 to 3.88 pmol/ml). Significant increases for plasma norepinephrine were observed immediately after exercise (36, 55, 73, and 100% MLP), 5 min after exercise (36, 55, and 73% MLP), and 15 min after exercise (36% MLP). Increases in whole blood lactate were observed at all points after exercise for 36, 55, and 73% MLP and 5 min after exercise for 100% MLP. These data show that brief high-intensity exercise results in differential response patterns of catecholamines and proenkephalin peptide F immunoreactivity.


1988 ◽  
Vol 65 (2) ◽  
pp. 519-524 ◽  
Author(s):  
S. M. Fortney ◽  
N. B. Vroman ◽  
W. S. Beckett ◽  
S. Permutt ◽  
N. D. LaFrance

We investigated the effects of a decrease in plasma volume (PV) and an increase in plasma osmolality during exercise on circulatory and thermoregulatory responses. Six subjects cycled at approximately 65% of their maximum O2 uptake in a warm environment (30 degrees C, 40% relative humidity). After 30 min of control (C) exercise (no infusion), PV decreased 13.0%, or 419 +/- 106 (SD) ml, heart rate (HR) increased to 167 +/- 3 beats/min, and esophageal temperature (Tes) rose to 38.19 +/- 0.09 degrees C (SE). During infusion studies (INF), infusates were started after 10 min of exercise. The infusates contained 5% albumin suspended in 0.45, 0.9, or 3.0% saline. The volume of each infusate was adjusted so that during the last 10 min of exercise PV was maintained at the preexercise level and osmolality was allowed to differ. HR was significantly lower (10-16 beats/min) during INF than during C. Tes was reduced significantly during INF, with trends for increased skin blood flow and decreased sweating rates. No significant differences in HR, Tes, or sweating rate occurred between the three infusion conditions. We conclude that the decrease in PV, which normally accompanies moderate cycle exercise, compromises circulatory and thermal regulations. Increases in osmolality appear to have small if any effects during such short-term exercise.


1996 ◽  
Vol 81 (4) ◽  
pp. 1495-1500 ◽  
Author(s):  
Adrianus J. Van Den Bergh ◽  
Sibrand Houtman ◽  
Arend Heerschap ◽  
Nancy J. Rehrer ◽  
Hendrikus J. Van Den Boogert ◽  
...  

Van Den Bergh, Adrianus J., Sibrand Houtman, Arend Heerschap, Nancy J. Rehrer, Hendrikus J. Van Den Boogert, Berend Oeseburg, and Maria T. E. Hopman. Muscle glycogen recovery after exercise during glucose and fructose intake monitored by13C-NMR. J. Appl. Physiol. 81(4): 1495–1500, 1996.—The purpose of this study was to examine muscle glycogen recovery with glucose feeding (GF) compared with fructose feeding (FF) during the first 8 h after partial glycogen depletion by using13C-nuclear magnetic resonance (NMR) on a clinical 1.5-T NMR system. After measurement of the glycogen concentration of the vastus lateralis (VL) muscle in seven male subjects, glycogen stores of the VL were depleted by bicycle exercise. During 8 h after completion of exercise, subjects were orally given either GF or FF while the glycogen content of the VL was monitored by13C-NMR spectroscopy every second hour. The muscular glycogen concentration was expressed as a percentage of the glycogen concentration measured before exercise. The glycogen recovery rate during GF (4.2 ± 0.2%/h) was significantly higher ( P < 0.05) compared with values during FF (2.2 ± 0.3%/h). This study shows that 1) muscle glycogen levels are perceptible by 13C-NMR spectroscopy at 1.5 T and 2) the glycogen restoration rate is higher after GF compared with after FF.


2000 ◽  
Vol 10 (3) ◽  
pp. 326-339 ◽  
Author(s):  
G. Gregory Haff ◽  
Alexander J. Koch ◽  
Jeffrey A. Potteiger ◽  
Karen E. Kuphal ◽  
Lawrence M. Magee ◽  
...  

The effects of carbohydrate (CHO) supplementation on muscle glycogen and resistance exercise performance were examined with eight highly resistance trained males (mean ± SEM, age: 24.3 ± 1.1 years, height: 171.9±2.0 cm, body mass: 85.7 ± 3.5 kg; experience 9.9 ± 2.0 years). Subjects participated in a randomized, double blind protocol with testing sessions separated by 7 days. Testing consisted of an initial isokinetic leg exercise before and after an isotonic resistance exercise (IRT) session consisting of 3 leg exercises lasting ~39 min. Subjects consumed a CHO (1.0 g CHO ·kg body mass−1) or placebo treatment (PLC), prior to and every 10-min (0.5 g CHO ·kg body mass−1) during the IRT. Muscle tissue was obtained from the m vastus lateralis after a supine rest (REST) immediately after the initial isokinetic test (POST-ISO) and immediately after the IRT (POST-IRT). The CHO treatment elicited significantly less muscle glycogen degradation from the POST-ISO to POST-IRT (126.9 ± 6.5 to 109.7 ± 7.1 mmol·kg wet weight−1) compared to PLC (121.4±8.1 to 88.3±6.0 mmol·kg wet weight−1). There were no differences in isokinetic performance between the treatments. The results of this investigation indicate that the consumption of a CHO beverage can attenuate the decrease in muscle glycogen associated with isotonic resistance exercise but does not enhance the performance of isokinetic leg exercise.


1992 ◽  
Vol 73 (6) ◽  
pp. 2701-2708 ◽  
Author(s):  
H. J. Green ◽  
J. R. Sutton ◽  
E. E. Wolfel ◽  
J. T. Reeves ◽  
G. E. Butterfield ◽  
...  

To determine whether the working muscle is able to sustain ATP homeostasis during a hypoxic insult and the mechanisms associated with energy metabolic adaptations during the acclimatization process, seven male subjects [23 +/- 2 (SE) yr, 72.2 +/- 1.6 kg] were given a prolonged exercise challenge (45 min) at sea level (SL), within 4 h after ascent to an altitude of 4,300 m (acute hypoxia, AH), and after 3 wk of sustained residence at 4,300 m (chronic hypoxia, CH). The prolonged cycle test conducted at the same absolute intensity and representing 51 +/- 1% of SL maximal aerobic power (VO2 max) and between 64 +/- 2 (AH) and 66 +/- 1% (CH) at altitude was performed without a reduction in ATP concentration in the working vastus lateralis regardless of condition. Compared with rest, exercise performed during AH resulted in a greater increase (P < 0.05) in muscle lactate concentration (5.11 +/- 0.68 to 22.3 +/- 6.1 mmol/kg dry wt) than exercise performed either at SL (5.88 +/- 0.85 to 11.5 +/- 3.1) or CH (5.99 +/- 0.88 to 12.4 +/- 2.1). These differences in lactate concentration have been shown to reflect differences in arterial lactate concentration and glycolysis (Brooks et al. J. Appl. Physiol. 71: 333–341, 1991). The reduction in glycolysis at least between AH and CH appears to be accompanied by a tighter metabolic control. During CH, free ADP was lower and the ATP-to-free ADP ratio was increased (P < 0.05) compared with AH.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document