Experimental hypothermia and rewarming: changes in mechanical function and metabolism of rat hearts

1996 ◽  
Vol 80 (1) ◽  
pp. 291-297 ◽  
Author(s):  
T. Tveita ◽  
M. Skandfer ◽  
H. Refsum ◽  
K. Ytrehus

Rewarming from accidental hypothermia is associated with fatal circulatory derangements. To investigate potential pathophysiological mechanisms involved, we examined heart function and metabolism in a rat model rewarmed after 4 h at 15-13 degrees C. Hypothermia resulted in a significant reduction of left ventricular (LV) systolic pressure, cardiac output, and heart rate, whereas stroke volume increased. The maximum rate of LV pressure rise decreased to 191 +/- 28 mmHg/s from a control value of 9,060 +/- 500 mmHg/s. Myocardial tissue content of ATP, ADP, and glycogen was significantly reduced, whereas lactate content remained unchanged. After rewarming, heart rate returned to control value, whereas LV systolic pressure, cardiac output, and stroke volume all remained significantly depressed. The posthypothermic maximum rate of LV pressure rise was 5,966 +/- 1.643 mmHg/s. The posthypothermic myocardial lactate content was significantly increased (to 13.3 +/- 3.2 nmol/mg from control value of 5.7 +/- 1.9 nmol/mg), and ATP and glycogen remained significantly lowered. Creatine phosphate or energy charge did not change significantly during the experiment. The finding of deteriorated myocardial mechanical function and a shift in energy metabolism shows that the heart could be an important target during hypothermia and rewarming in vivo, thus contributing to the development of a posthypothermic circulatory collapse.

1983 ◽  
Vol 244 (3) ◽  
pp. H320-H327 ◽  
Author(s):  
W. E. Kanten ◽  
D. G. Penney ◽  
K. Francisco ◽  
J. E. Thill

The effects of carbon monoxide on the hemodynamics of the adult rat were investigated. A number of parameters were measured using an open-chest, chloralose-urethan anesthetized preparation. Our experiments showed this anesthetic agent to have several advantages over pentobarbital sodium. One group inhaled 150 ppm CO for 0.5-2 h, carboxyhemoglobin (HbCO) reaching 16%. Heart rate, cardiac output, cardiac index, dF/dtmax (aortic), and stroke volume rose significantly; mean arterial pressure, total peripheral resistance, and left ventricular systolic pressure fell, whereas stroke work, left ventricular dP/dtmax, and stroke power changed little. These effects were evident at a HbCO saturation as low as 7.5% (0.5 h). A second group inhaled 500 ppm CO for 5-48 h, HbCO reaching 35-38%. The same parameters changed in the same direction as in the first group, with mean arterial pressure and peripheral resistance remaining depressed, while heart rate, cardiac output, cardiac index, and stroke volume remained elevated. Heart rate and arterial systolic pressure were also monitored in conscious rats; rats in one group inhaled 500 ppm CO for 24 h, and rats in a second group were injected with a bubble of pure CO ip. In both cases heart rate was sharply elevated and blood pressure depressed as HbCO saturation increased. Both parameters recovered on CO washout. There was no significant difference between the response to inhaled vs. injected CO.


2011 ◽  
pp. 42-47
Author(s):  
James R. Munis

We've already looked at 2 types of pressure that affect physiology (atmospheric and hydrostatic pressure). Now let's consider the third: vascular pressures that result from mechanical events in the cardiovascular system. As you already know, cardiac output can be defined as the product of heart rate times stroke volume. Heart rate is self-explanatory. Stroke volume is determined by 3 factors—preload, afterload, and inotropy—and these determinants are in turn dependent on how the left ventricle handles pressure. In a pressure-volume loop, ‘afterload’ is represented by the pressure at the end of isovolumic contraction—just when the aortic valve opens (because the ventricular pressure is now higher than aortic root pressure). These loops not only are straightforward but are easier to construct just by thinking them through, rather than by memorization.


2006 ◽  
Vol 84 (10) ◽  
pp. 985-991 ◽  
Author(s):  
T.V. Kondratiev ◽  
T. Tveita

This experimental study was performed to explore hemodynamic effects of a moderate dose epinephrine (Epi) during hypothermia and to test the hypothesis whether sympathetic stimulation during cooling affects myocardial function following rewarming. Two groups of male Wistar rats (each, n = 7) were cooled to 15 °C, maintained at this temperature for 1 h, and then rewarmed. Group 1 received 1 μg/min Epi, i.v., for 1 h during cooling to 28 °C, a dose known to elevate cardiac output (CO) by approximately 25% at 37 °C. Group 2 served a saline solution control. At 37 °C, Epi infusion elevated CO, left ventricular systolic pressure, maximum rate of left ventricle pressure rise, and mean arterial pressure. During cooling to 28 °C, these variables, with the exception of mean arterial pressure, decreased in parallel to those in the saline solution group. In contrast, in the Epi group, mean arterial pressure remained increased and total peripheral resistance was significantly elevated at 28 °C. Compared with corresponding prehypothermic values, most hemodynamic variables were lowered after 1 h at 15 °C in both groups (except for stroke volume). After rewarming, alterations in hemodynamic variables in the Epi-treated group were more prominent than in saline solution controls. Thus, before cooling, continuous Epi infusion predominantly stimulates myocardial mechanical function, materialized as elevation of CO, left ventricular systolic pressure, and maximum rate of left ventricle pressure rise. Cooling, on the other hand, apparently eradicates central hemodynamic effects of Epi and during stable hypothermia, elevation of peripheral vascular vasopressor effects seem to take over. In contrast to temperature-matched, non-Epi stimulated control rats, a significant depression of myocardial mechanical function occurs during rewarming following a moderate sympathetic stimulus during initial cooling.


1985 ◽  
Vol 249 (2) ◽  
pp. H285-H292 ◽  
Author(s):  
J. M. Chemnitius ◽  
W. Burger ◽  
R. J. Bing

Krebs-Henseleit buffer (KH) and a perfluorochemical (FC-43) were compared as perfusates in an isolated working rabbit heart preparation. Both perfusates were oxygenated in an identical manner using an infant bubble oxygenator. After 60 min of perfusion, no difference could be detected in the ratio of wet to dry heart weight between KH- and FC-43-perfused hearts (KH, 6.25 +/- 0.3; FC-43, 5.99 +/- 0.20). Left ventricular systolic pressure, maximal rate of left ventricular pressure rise, mean aortic systolic pressure, cardiac output, aortic flow, left ventricular power, and myocardial O2 consumption (MVO2) were significantly higher in FC-43-perfused hearts throughout the time of perfusion. However, there were no differences in resistance to cardiac output and heart rate. In KH- and FC-43-perfused hearts, MVO2 and left ventricular power were closely correlated (KH, r = 0.793; FC-43, r = 0.831). Significantly higher coronary flow of KH-perfused hearts could be attributed to the lower viscosity of KH (1.05 Pa . s) compared with FC-43 (1.91 Pa . s). Increased O2 extraction during KH perfusion could not compensate for low O2-carrying capacity of KH buffer (345 compared with 705 nmol O2 X ml-1 in FC-43 emulsion). A postischemic increase of coronary flow was observed only in FC-43-perfused hearts (28%). These results demonstrate a different response of perfused heart preparations to FC-43 and KH buffer.


2020 ◽  
Vol 319 (1) ◽  
pp. R1-R10 ◽  
Author(s):  
Joseph Mannozzi ◽  
Jasdeep Kaur ◽  
Marty D. Spranger ◽  
Mohamed-Hussein Al-Hassan ◽  
Beruk Lessanework ◽  
...  

Dynamic exercise elicits robust increases in sympathetic activity in part due to muscle metaboreflex activation (MMA), a pressor response triggered by activation of skeletal muscle afferents. MMA during dynamic exercise increases arterial pressure by increasing cardiac output via increases in heart rate, ventricular contractility, and central blood volume mobilization. In heart failure, ventricular function is compromised, and MMA elicits peripheral vasoconstriction. Ventricular-vascular coupling reflects the efficiency of energy transfer from the left ventricle to the systemic circulation and is calculated as the ratio of effective arterial elastance ( Ea) to left ventricular maximal elastance ( Emax). The effect of MMA on Ea in normal subjects is unknown. Furthermore, whether muscle metaboreflex control of Ea is altered in heart failure has not been investigated. We utilized two previously published methods of evaluating Ea [end-systolic pressure/stroke volume ( EaPV)] and [heart rate × vascular resistance ( EaZ)] during rest, mild treadmill exercise, and MMA (induced via partial reductions in hindlimb blood flow imposed during exercise) in chronically instrumented conscious canines before and after induction of heart failure via rapid ventricular pacing. In healthy animals, MMA elicits significant increases in effective arterial elastance and stroke work that likely maintains ventricular-vascular coupling. In heart failure, Ea is high, and MMA-induced increases are exaggerated, which further exacerbates the already uncoupled ventricular-vascular relationship, which likely contributes to the impaired ability to raise stroke work and cardiac output during exercise in heart failure.


1975 ◽  
Vol 39 (3) ◽  
pp. 449-452 ◽  
Author(s):  
L. D. Horwitz ◽  
J. M. Atkins ◽  
S. A. Dunbar

Left ventricular dynamics during recovery were measured in dogs, 3 min after brief periods of mild, moderate, and severe treadmill exercise. As compared with resting values, stroke volume was unchanged, and the maximum first derivative of the left ventricular pressure was either unchanged or slightly elevated. Increases in heart rate of 20, 26, and 46 beats/min for mild, moderate, and severe exercise appear to be the major factor in augmenting cardiac output during recovery. With moderate and severe exercise, left ventricular end-diastolic diameter increased and continued to be elevated during recovery, whereas end-systolic diameter decreased during exercise but was elevated above resting values during recovery. Therefore, with strenuous exercise, a sympathetic-mediated increase in contractility recedes promptly during the postexercise period but the Frank-Starling mechanism continues to be a factor.


1982 ◽  
Vol 52 (5) ◽  
pp. 1198-1208 ◽  
Author(s):  
Y. Miyamoto ◽  
T. Hiura ◽  
T. Tamura ◽  
T. Nakamura ◽  
J. Higuchi ◽  
...  

Stroke volume, heart rate, cardiac output, tidal volume, respiratory frequency, minute ventilation, end-tidal tensions of O2 and CO2, O2 uptake, CO2 output, and respiratory exchange ratio were measured simultaneously in healthy male volunteers before, during, and after upright bicycle exercise from 0 to 360 and 720 kpm/min. The circulatory variables were determined continuously once per 20 cardiac cycles and the respiratory variables breath by breath using separate computer-based systems in which an impedance pneumograph and an impedance cardiograph were incorporated. Stroke volume, heart rate, and cardiac output started to increase without measurable delay at the onset of exercise. Stroke volume increased by 20% from resting control value in response to the mildest exercise and essentially leveled off with a further increase in work load. Time constant for cardiac output increased with the increasing work load. Time constant for minute ventilation was much longer than that for cardiac output and independent of work intensity. A good synchronization between the ventilation and cardiac output responses at an initial period of transitions from rest to exercise and from exercise to rest seems to support the concept of cardiodynamic hyperpnea.


2020 ◽  
Vol 42 (01) ◽  
pp. 56-65
Author(s):  
Xavier Woorons ◽  
Frederic Lemaitre ◽  
Guido Claessen ◽  
Cloé Woorons ◽  
Henri Vandewalle

AbstractEight well-trained male cyclists participated in two testing sessions each including two sets of 10 cycle exercise bouts at 150% of maximal aerobic power. In the first session, subjects performed the exercise bouts with end-expiratory breath holding (EEBH) of maximal duration. Each exercise bout started at the onset of EEBH and ended at its release (mean duration: 9.6±0.9 s; range: 8.6–11.1 s). At the second testing session, subjects performed the exercise bouts (same duration as in the first session) with normal breathing. Heart rate, left ventricular stroke volume (LVSV), and cardiac output were continuously measured through bio-impedancemetry. Data were analysed for the 4 s preceding and following the end of each exercise bout. LVSV (peak values: 163±33 vs. 124±17 mL, p<0.01) was higher and heart rate lower both in the end phase and in the early recovery of the exercise bouts with EEBH as compared with exercise with normal breathing. Cardiac output was generally not different between exercise conditions. This study showed that performing maximal EEBH during high-intensity exercise led to a large increase in LVSV. This phenomenon is likely explained by greater left ventricular filling as a result of an augmented filling time and decreased right ventricular volume at peak EEBH.


1984 ◽  
Vol 62 (6) ◽  
pp. 634-639 ◽  
Author(s):  
Volker B. Fiedler ◽  
Helmut Göbel ◽  
Rolf-Eberhard Nitz

In pentobarbital-anesthetized mongrel dogs the intravenous actions of 0.50 mg/kg molsidomine on pulmonary artery and left ventricular (LV) end-diastolic pressures and internal heart dimensions (preload), left ventricular systolic and peripheral blood pressures, and total peripheral resistance (afterload), as well as on heart rate, dP/dt, stroke volume, and cardiac output (heart performance) were studied for 2 h. Hemodynamic molsidomine effects were influenced by increasing amounts of intravenously infused dihydroergotamine solution (DHE, 1–64 μg∙kg−1∙min−1). Molsidomine decreased preload, stroke volume, and cardiac output for over 2 h but decreased ventricular and peripheral pressures for 45 min. Systemic vascular resistance showed a tendency to decrease while heart rate and LV dP/dtmax were not altered. DHE infusion reversed molsidomine effects on the preload and afterload of the heart. The diminished stroke volume was elevated so that cardiac output also increased. Total peripheral resistance increased while heart rate fell in a dose-dependent fashion. The LV dP/dtmax remained unchanged until the highest dose of 64 μg∙kg−1∙min−1 DHE elevated the isovolumic myocardial contractility. These experiments indicate that DHE can reverse the intravenous molsidomine effects on hemodynamics. Most likely, this is mediated through peripheral vasoconstriction of venous capacitance vessels, thereby affecting moldisomine's action on postcapillary beds of the circulation.


2008 ◽  
Vol 294 (3) ◽  
pp. H1304-H1309 ◽  
Author(s):  
Javier A. Sala-Mercado ◽  
Masashi Ichinose ◽  
Robert L. Hammond ◽  
Matthew Coutsos ◽  
Tomoko Ichinose ◽  
...  

Dynamic cardiac baroreflex responses are frequently investigated by analyzing the spontaneous reciprocal changes in arterial pressure and heart rate (HR). However, whether the spontaneous baroreflex-induced changes in HR translate into changes in cardiac output (CO) is unknown. In addition, this linkage between changes in HR and changes in CO may be different in subjects with heart failure (HF). We examined these questions using conscious dogs before and after pacing-induced HF. Spontaneous baroreflex sensitivity in the control of HR and CO was evaluated as the slopes of the linear relationships between HR or CO and left ventricular systolic pressure (LVSP) during spontaneous sequences of greater or equal to three consecutive beats when HR or CO changed inversely versus pressure. Furthermore, the translation of baroreflex HR responses into CO responses (HR-CO translation) was examined by computing the overlap between HR and CO sequences. In normal resting conditions, 44.0 ± 4.4% of HR sequences overlapped with CO sequences, suggesting that only around half of the baroreflex HR responses cause CO responses. In HF, HR-LVSP, CO-LVSP, and the HR-CO translation significantly decreased compared with the normal condition (−2.29 ± 0.5 vs. −5.78 ± 0.7 beats·min−1·mmHg−1; −70.95 ± 11.8 vs. −229.89 ± 29.6 ml·min−1·mmHg−1; and 19.66 ± 4.9 vs. 44.0 ± 4.4%, respectively). We conclude that spontaneous baroreflex HR responses do not always cause changes in CO. In addition, HF significantly decreases HR-LVSP, CO-LVSP, and HR-CO translation.


Sign in / Sign up

Export Citation Format

Share Document