scholarly journals Measurement of pulmonary blood flow by fractal analysis of flow heterogeneity in isolated canine lungs

1996 ◽  
Vol 81 (5) ◽  
pp. 2039-2045 ◽  
Author(s):  
Scott A. Barman ◽  
Laryssa L. McCloud ◽  
John D. Catravas ◽  
Ina C. Ehrhart

Barman, Scott A., Laryssa L. McCloud, John D. Catravas, and Ina C. Ehrhart. Measurement of pulmonary blood flow by fractal analysis of flow heterogeneity in isolated canine lungs. J. Appl. Physiol. 81(5): 2039–2045, 1996.—Regional heterogeneity of lung blood flow can be measured by analyzing the relative dispersion (RD) of mass (weight)-flow data. Numerous studies have shown that pulmonary blood flow is fractal in nature, a phenomenon that can be characterized by the fractal dimension and the RD for the smallest realizable volume element (piece size). Although information exists for the applicability of fractal analysis to pulmonary blood flow in whole animal models, little is known in isolated organs. Therefore, the present study was done to determine the effect of blood flow rate on the distribution of pulmonary blood flow in the isolated blood-perfused canine lung lobe by using fractal analysis. Four different radiolabeled microspheres (141Ce,95Nb,85Sr, and51Cr), each 15 μm in diameter, were injected into the pulmonary lobar artery of isolated canine lung lobes ( n = 5) perfused at four different flow rates ( flow 1 = 0.42 ± 0.02 l/min; flow 2 = 1.12 ± 0.07 l/min; flow 3 = 2.25 ± 0.17 l/min; flow 4 = 2.59 ± 0.17 l/min), and the pulmonary blood flow distribution was measured. The results of the present study indicate that under isogravimetric blood flow conditions, all regions of horizontally perfused isolated lung lobes received blood flow that was preferentially distributed to the most distal caudal regions of the lobe. Regional pulmonary blood flow in the isolated perfused canine lobe was heterogeneous and fractal in nature, as measured by the RD. As flow rates increased, fractal dimension values (averaging 1.22 ± 0.08) remained constant, whereas RD decreased, reflecting more homogeneous blood flow distribution. At any given blood flow rate, high-flow areas of the lobe received a proportionally larger amount of regional flow, suggesting that the degree of pulmonary vascular recruitment may also be spatially related.

1999 ◽  
Vol 87 (1) ◽  
pp. 132-141 ◽  
Author(s):  
Steven Deem ◽  
Richard G. Hedges ◽  
Steven McKinney ◽  
Nayak L. Polissar ◽  
Michael K. Alberts ◽  
...  

Severe anemia is associated with remarkable stability of pulmonary gas exchange (S. Deem, M. K. Alberts, M. J. Bishop, A. Bidani, and E. R. Swenson. J. Appl. Physiol. 83: 240–246, 1997), although the factors that contribute to this stability have not been studied in detail. In the present study, 10 Flemish Giant rabbits were anesthetized, paralyzed, and mechanically ventilated at a fixed minute ventilation. Serial hemodilution was performed in five rabbits by simultaneous withdrawal of blood and infusion of an equal volume of 6% hetastarch; five rabbits were followed over a comparable time. Ventilation-perfusion (V˙a/Q˙) relationships were studied by using the multiple inert-gas-elimination technique, and pulmonary blood flow distribution was assessed by using fluorescent microspheres. Expired nitric oxide (NO) was measured by chemiluminescence. Hemodilution resulted in a linear fall in hematocrit over time, from 30 ± 1.6 to 11 ± 1%. Anemia was associated with an increase in arterial [Formula: see text] in comparison with controls ( P < 0.01 between groups). The improvement in O2 exchange was associated with reducedV˙a/Q˙heterogeneity, a reduction in the fractal dimension of pulmonary blood flow ( P = 0.04), and a relative increase in the spatial correlation of pulmonary blood flow ( P = 0.04). Expired NO increased with anemia, whereas it remained stable in control animals ( P < 0.0001 between groups). Anemia results in improved gas exchange in the normal lung as a result of an improvement in overallV˙a/Q˙matching. In turn, this may be a result of favorable changes in pulmonary blood flow distribution, as assessed by the fractal dimension and spatial correlation of blood flow and as a result of increased NO availability.


1999 ◽  
Vol 14 (3) ◽  
pp. 154-160 ◽  
Author(s):  
Masao Tayama ◽  
Nobuaki Hirata ◽  
Tohru Matsushita ◽  
Tetsuya Sano ◽  
Norihide Fukushima ◽  
...  

1972 ◽  
Vol 50 (8) ◽  
pp. 774-783 ◽  
Author(s):  
Serge Carrière ◽  
Michel Desrosiers ◽  
Jacques Friborg ◽  
Michèle Gagnan Brunette

Furosemide (40 μg/min) was perfused directly into the renal artery of dogs in whom the femoral blood pressure was reduced (80 mm Hg) by aortic clamping above the renal arteries. This maneuver, which does not influence the intrarenal blood flow distribution, produced significant decreases of the urine volume, natriuresis, Ccreat, and CPAH, and prevented the marked diuresis normally produced by furosemide. Therefore the chances that systemic physiological changes occurred, secondary to large fluid movements, were minimized. In those conditions, however, furosemide produced a significant increase of the urine output and sodium excretion in the experimental kidney whereas Ccreat and CPAH were not affected. The outer cortical blood flow rate (ml/100 g-min) was modified neither by aortic constriction (562 ± 68 versus 569 ± 83) nor by the subsequent administration of furosemide (424 ± 70). The blood flow rate of the outer medulla in these three conditions remained unchanged (147 ± 52 versus 171 ± 44 versus 159 ± 54). The initial distribution of the radioactivity in each compartment remained comparable in the three conditions. In parallel with the results from the krypton-85 disappearance curves, the autoradiograms, silicone rubber casts, and EPAH did not suggest any change in the renal blood flow distribution secondary to furosemide administration.


1996 ◽  
Vol 80 (6) ◽  
pp. 1978-1983 ◽  
Author(s):  
S. S. Kurdak ◽  
B. Grassi ◽  
P. D. Wagner ◽  
M. C. Hogan

The purpose of this study was to determine whether reduction in apparent muscle O2 diffusing capacity (Dmo2) calculated during reduced blood flow conditions in maximally working muscle is a reflection of alterations in blood flow distribution. Isolated dog gastrocnemius muscle (n = 6) was stimulated for 3 min to achieve peak O2 uptake (VO2) at two levels of blood flow (controlled by pump perfusion): control (C) conditions at normal perfusion pressure (blood flow = 111 +/- 10 ml.100 g-1.min-1) and reduced blood flow treatment [ischemia (I); 52 +/- 6 ml.100 g-1.min-1]. In addition, maximal vasodilation was achieved by adenosine (A) infusion (10(-2)M) at both levels of blood flow, so that each muscle was subjected randomly to a total of four conditions (C, CA, I, and IA; each separated by 45 min of rest). Muscle blood flow distribution was measured with 15-microns-diameter colored microspheres. A numerical integration technique was used to calculate Dmo2 for each treatment with use of a model that calculates O2 loss along a capillary on the basis of Fick's law of diffusion. Peak VO2 was reduced significantly (P < 0.01) with ischemia and was unchanged by adenosine infusion at either flow rate (10.6 +/- 0.9, 9.7 +/- 1.0, 6.7 +/- 0.2, and 5.9 +/- 0.8 ml.100 g-1.min-1 for C, CA, I, and IA, respectively). Dmo2 was significantly lower by 30-35% (P < 0.01) when flow was reduced (except for CA vs. I; 0.23 +/- 0.03, 0.20 +/- 0.02, 0.16 +/- 0.01, and 0.13 +/- 0.01 ml.100 g-1.min-1.Torr-1 for C, CA, I, and IA, respectively). As expressed by the coefficient of variation (0.45 +/- 0.04, 0.47 +/- 0.04, 0.55 +/- 0.03, and 0.53 +/- 0.04 for C, CA, I, and IA, respectively), blood flow heterogeneity per se was not significantly different among the four conditions when examined by analysis of variance. However, there was a strong negative correlation (r = 0.89, P < 0.05) between Dmo2 and blood flow heterogeneity among the four conditions, suggesting that blood flow redistribution (likely a result of a decrease in the number of perfused capillaries) becomes an increasingly important factor in the determination of Dmo2 as blood flow is diminished.


2021 ◽  
Vol 12 ◽  
Author(s):  
Peilun Li ◽  
Qing Pan ◽  
Sheng Jiang ◽  
Molei Yan ◽  
Jing Yan ◽  
...  

Blood perfusion is an important index for the function of the cardiovascular system and it can be indicated by the blood flow distribution in the vascular tree. As the blood flow in a vascular tree varies in a large range of scales and fractal analysis owns the ability to describe multi-scale properties, it is reasonable to apply fractal analysis to depict the blood flow distribution. The objective of this study is to establish fractal methods for analyzing the blood flow distribution which can be applied to real vascular trees. For this purpose, the modified methods in fractal geometry were applied and a special strategy was raised to make sure that these methods are applicable to an arbitrary vascular tree. The validation of the proposed methods on real arterial trees verified the ability of the produced parameters (fractal dimension and multifractal spectrum) in distinguishing the blood flow distribution under different physiological states. Furthermore, the physiological significance of the fractal parameters was investigated in two situations. For the first situation, the vascular tree was set as a perfect binary tree and the blood flow distribution was adjusted by the split ratio. As the split ratio of the vascular tree decreases, the fractal dimension decreases and the multifractal spectrum expands. The results indicate that both fractal parameters can quantify the degree of blood flow heterogeneity. While for the second situation, artificial vascular trees with different structures were constructed and the hemodynamics in these vascular trees was simulated. The results suggest that both the vascular structure and the blood flow distribution affect the fractal parameters for blood flow. The fractal dimension declares the integrated information about the heterogeneity of vascular structure and blood flow distribution. In contrast, the multifractal spectrum identifies the heterogeneity features in blood flow distribution or vascular structure by its width and height. The results verified that the proposed methods are capable of depicting the multi-scale features of the blood flow distribution in the vascular tree and further are potential for investigating vascular physiology.


2000 ◽  
Vol 16 (2) ◽  
pp. 288 ◽  
Author(s):  
T.V. Brogan ◽  
R.G. Hedges ◽  
S. McKinney ◽  
H.T. Robertson ◽  
M.P. Hlastala ◽  
...  

Respiration ◽  
1974 ◽  
Vol 31 (4) ◽  
pp. 289-295
Author(s):  
M. Arborelius, jr. ◽  
V. Lopéz-Majano ◽  
R.C. Reba ◽  
T.K. Natarajan

2019 ◽  
Vol 16 (10) ◽  
pp. 1321-1326 ◽  
Author(s):  
Luisa Morales-Nebreda ◽  
Christopher S. Chung ◽  
Rishi Agrawal ◽  
Anjana V. Yeldandi ◽  
Benjamin D. Singer ◽  
...  

1988 ◽  
Vol 255 (6) ◽  
pp. H1535-H1541 ◽  
Author(s):  
U. Abildgaard ◽  
O. Amtorp ◽  
J. Gyring ◽  
G. Daugaard ◽  
B. Larsen

Intrarenal distribution of blood flow was assessed with radioactive albumin microaggregates (MA) in three cortical zones of the dog kidney. The experimentally obtained zonal fractions of total renal blood flow were compared with predicted zonal blood flow fractions obtained in a mathematical model. The maximal degree of skimming that could possibly occur in a single experiment was estimated. The analysis showed that local blood flow in the inner cortical zone was maximally underestimated by 17% because of skimming of MA, and in the outer cortical zone the blood flow was maximally overestimated by 13% with the method of radioactive MA uptake. Renal uptake of 201Tl was measured simultaneously in exactly the same locations. Paired measurements of intrarenal blood flow distribution by MA and Tl uptake methodologies showed that local blood flow assessed with MA in the inner cortical zone was significantly lower than that obtained with 201Tl and that a higher blood flow rate was obtained in the outer cortical zone with MA compared with 201Tl. This disparity could be accounted for by the effect of skimming of MA as predicted by the model.


1996 ◽  
Vol 81 (3) ◽  
pp. 1051-1061 ◽  
Author(s):  
M. P. Hlastala ◽  
S. L. Bernard ◽  
H. H. Erickson ◽  
M. R. Fedde ◽  
E. M. Gaughan ◽  
...  

Recent studies using microspheres in dogs, pigs and goats have demonstrated considerable heterogeneity of pulmonary perfusion within isogravitational planes. These studies demonstrate a minimal role of gravity in determining pulmonary blood flow distribution. To test whether a gravitational gradient would be more apparent in an animal with large vertical lung height, we measured perfusion heterogeneity in horses (vertical lung height = approximately 55 cm). Four unanesthetized Thoroughbred geldings (422-500 kg) were studied awake in the standing position with fluorescent microspheres injected into a central vein. Between 1,621 and 2,503 pieces (1.3 cm3 in volume) were obtained from the lungs of each horse with spatial coordinates, and blood flow was determined for each piece. The coefficient of variation of blood flow throughout the lungs ranged between 22 and 57% among the horses. Considerable heterogeneity was seen in each isogravitational plane. The relationship between blood flow and vertical height up the lung was characterized by the slope and correlation coefficient of a least squares regression analysis. The slopes within each horse ranged from -0.052 to +0.021 relative flow units/cm height up the lung, and the correlation coefficients varied from 0.12 to 0.75. A positive slope, indicating that flow increased with vertical distance up the lung (opposite to gravity), was observed in three of the four horses. In addition, blood flow was uniformly low in three of the four horses in the most cranial portions of the lungs. We conclude that in lungs of resting unanesthetized horses, animals with a large lung height, there is no consistent vertical gradient to pulmonary blood flow and there is a considerable degree of perfusion heterogeneity, indicating that gravity alone does not play the major role in determining blood flow distribution.


Sign in / Sign up

Export Citation Format

Share Document