scholarly journals Pulmonary NO synthase inhibition and inspired CO2: effects on V ′/Q ′ and pulmonary blood flow distribution

2000 ◽  
Vol 16 (2) ◽  
pp. 288 ◽  
Author(s):  
T.V. Brogan ◽  
R.G. Hedges ◽  
S. McKinney ◽  
H.T. Robertson ◽  
M.P. Hlastala ◽  
...  
1999 ◽  
Vol 87 (1) ◽  
pp. 132-141 ◽  
Author(s):  
Steven Deem ◽  
Richard G. Hedges ◽  
Steven McKinney ◽  
Nayak L. Polissar ◽  
Michael K. Alberts ◽  
...  

Severe anemia is associated with remarkable stability of pulmonary gas exchange (S. Deem, M. K. Alberts, M. J. Bishop, A. Bidani, and E. R. Swenson. J. Appl. Physiol. 83: 240–246, 1997), although the factors that contribute to this stability have not been studied in detail. In the present study, 10 Flemish Giant rabbits were anesthetized, paralyzed, and mechanically ventilated at a fixed minute ventilation. Serial hemodilution was performed in five rabbits by simultaneous withdrawal of blood and infusion of an equal volume of 6% hetastarch; five rabbits were followed over a comparable time. Ventilation-perfusion (V˙a/Q˙) relationships were studied by using the multiple inert-gas-elimination technique, and pulmonary blood flow distribution was assessed by using fluorescent microspheres. Expired nitric oxide (NO) was measured by chemiluminescence. Hemodilution resulted in a linear fall in hematocrit over time, from 30 ± 1.6 to 11 ± 1%. Anemia was associated with an increase in arterial [Formula: see text] in comparison with controls ( P < 0.01 between groups). The improvement in O2 exchange was associated with reducedV˙a/Q˙heterogeneity, a reduction in the fractal dimension of pulmonary blood flow ( P = 0.04), and a relative increase in the spatial correlation of pulmonary blood flow ( P = 0.04). Expired NO increased with anemia, whereas it remained stable in control animals ( P < 0.0001 between groups). Anemia results in improved gas exchange in the normal lung as a result of an improvement in overallV˙a/Q˙matching. In turn, this may be a result of favorable changes in pulmonary blood flow distribution, as assessed by the fractal dimension and spatial correlation of blood flow and as a result of increased NO availability.


1999 ◽  
Vol 14 (3) ◽  
pp. 154-160 ◽  
Author(s):  
Masao Tayama ◽  
Nobuaki Hirata ◽  
Tohru Matsushita ◽  
Tetsuya Sano ◽  
Norihide Fukushima ◽  
...  

Respiration ◽  
1974 ◽  
Vol 31 (4) ◽  
pp. 289-295
Author(s):  
M. Arborelius, jr. ◽  
V. Lopéz-Majano ◽  
R.C. Reba ◽  
T.K. Natarajan

2019 ◽  
Vol 16 (10) ◽  
pp. 1321-1326 ◽  
Author(s):  
Luisa Morales-Nebreda ◽  
Christopher S. Chung ◽  
Rishi Agrawal ◽  
Anjana V. Yeldandi ◽  
Benjamin D. Singer ◽  
...  

1996 ◽  
Vol 81 (3) ◽  
pp. 1051-1061 ◽  
Author(s):  
M. P. Hlastala ◽  
S. L. Bernard ◽  
H. H. Erickson ◽  
M. R. Fedde ◽  
E. M. Gaughan ◽  
...  

Recent studies using microspheres in dogs, pigs and goats have demonstrated considerable heterogeneity of pulmonary perfusion within isogravitational planes. These studies demonstrate a minimal role of gravity in determining pulmonary blood flow distribution. To test whether a gravitational gradient would be more apparent in an animal with large vertical lung height, we measured perfusion heterogeneity in horses (vertical lung height = approximately 55 cm). Four unanesthetized Thoroughbred geldings (422-500 kg) were studied awake in the standing position with fluorescent microspheres injected into a central vein. Between 1,621 and 2,503 pieces (1.3 cm3 in volume) were obtained from the lungs of each horse with spatial coordinates, and blood flow was determined for each piece. The coefficient of variation of blood flow throughout the lungs ranged between 22 and 57% among the horses. Considerable heterogeneity was seen in each isogravitational plane. The relationship between blood flow and vertical height up the lung was characterized by the slope and correlation coefficient of a least squares regression analysis. The slopes within each horse ranged from -0.052 to +0.021 relative flow units/cm height up the lung, and the correlation coefficients varied from 0.12 to 0.75. A positive slope, indicating that flow increased with vertical distance up the lung (opposite to gravity), was observed in three of the four horses. In addition, blood flow was uniformly low in three of the four horses in the most cranial portions of the lungs. We conclude that in lungs of resting unanesthetized horses, animals with a large lung height, there is no consistent vertical gradient to pulmonary blood flow and there is a considerable degree of perfusion heterogeneity, indicating that gravity alone does not play the major role in determining blood flow distribution.


1999 ◽  
Vol 91 (6) ◽  
pp. 1861-1861 ◽  
Author(s):  
Steven Deem ◽  
Steven McKinney ◽  
Nayak L. Polissar ◽  
Richard G. Hedges ◽  
Erik R. Swenson

Background Isovolemic anemia results in improved gas exchange in rabbits with normal lungs but in relatively poorer gas exchange in rabbits with whole-lung atelectasis. In the current study, the authors characterized the effects of hemodilution on gas exchange in a distinct model of diffuse lung injury: venous gas embolization. Methods Twelve anesthetized rabbits were mechanically ventilated at a fixed rate and volume. Gas embolization was induced by continuous infusion of nitrogen via an internal jugular venous catheter. Serial hemodilution was performed in six rabbits by simultaneous withdrawal of blood and infusion of an equal volume of 6% hetastarch; six rabbits were followed as controls over time. Measurements included hemodynamic parameters and blood gases, ventilation-perfusion (V(A)/Q) distribution (multiple inert gas elimination technique), pulmonary blood flow distribution (fluorescent microspheres), and expired nitric oxide (NO; chemoluminescence). Results Venous gas embolization resulted in a decrease in partial pressure of arterial oxygen (PaO2) and an increase in partial pressure of arterial carbon dioxide (PaCO2), with markedly abnormal overall V(A)/Q distribution and a predominance of high V(A)/Q areas. Pulmonary blood flow distribution was markedly left-skewed, with low-flow areas predominating. Hematocrit decreased from 30+/-1% to 11+/-1% (mean +/- SE) with hemodilution. The alveolar-arterial PO2 (A-aPO2) difference decreased from 375+/-61 mmHg at 30% hematocrit to 218+/-12.8 mmHg at 15% hematocrit, but increased again (301+/-33 mmHg) at 11% hematocrit. In contrast, the A-aPO2 difference increased over time in the control group (P &lt; 0.05 between groups over time). Changes in PaO2 in both groups could be explained in large part by variations in intrapulmonary shunt and mixed venous oxygen saturation (SvO2); however, the improvement in gas exchange with hemodilution was not fully explained by significant changes in V(A)/Q or pulmonary blood flow distributions, as quantitated by the coefficient of variation (CV), fractal dimension, and spatial correlation of blood flow. Expired NO increased with with gas embolization but did not change significantly with time or hemodilution. Conclusions Isovolemic hemodilution results in improved oxygen exchange in rabbits with lung injury induced by gas embolization. The mechanism for this improvement is not clear.


2011 ◽  
Vol 110 (4) ◽  
pp. 901-908 ◽  
Author(s):  
Daryl O. Schwenke ◽  
James T. Pearson ◽  
Takashi Sonobe ◽  
Hatsue Ishibashi-Ueda ◽  
Akito Shimouchi ◽  
...  

Rho-kinase-mediated vasoconstriction and endothelial dysfunction are considered two primary instigators of pulmonary arterial hypertension (PAH). However, their contribution to the adverse changes in pulmonary blood flow distribution associated with PAH has not been addressed. This study utilizes synchrotron radiation microangiography to assess the specific role, and contribution of, Rho-kinase-mediated vasoconstriction and endothelial dysfunction in PAH. Male adult Sprague-Dawley rats were injected with saline (Cont-rats) or monocrotaline (MCT-rats) 3 wk before microangiography was performed on the left lung. We assessed dynamic changes in vessel internal diameter (ID) in response to 1) the Rho-kinase inhibitor fasudil (10 mg/kg iv); or 2) ACh (3 μg · kg−1 · min−1), sodium nitroprusside (SNP, 5 μg · kg−1 · min−1), and Nω-nitro-l-arginine methyl ester (l-NAME, 50 mg/kg iv). We observed that MCT-rats had fewer vessels of the microcirculation compared with Cont-rats. The fundamental result of this study is that fasudil improved pulmonary blood flow distribution and reduced pulmonary pressure in PAH rats, not only by dilating already-perfused vessels (ID > 100 μm), but also by restoring blood flow to vessels that had previously been constricted closed (ID < 100 μm). Endothelium-dependent vasodilation was impaired in MCT-rats primarily in vessels with an ID < 200 μm. Moreover the vasoconstrictor response to l-NAME was accentuated in MCT-rats, but only in the 200- to 300-μm vessels. These results highlight the importance of Rho-kinase-mediated control and endothelial control of pulmonary vascular tone in PAH. Indeed, an effective therapeutic strategy for treating PAH should target both the smooth muscle Rho-kinase and endothelial pathways.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253565
Author(s):  
Takuya Sakaguchi ◽  
Yuichiro Watanabe ◽  
Masashi Hirose ◽  
Kohta Takei ◽  
Satoshi Yasukochi

Objective Quantitative assessment of pulmonary blood flow distribution is important when determining the clinical indications for treating pulmonary arterial branch stenosis. Lung perfusion scintigraphy is currently the gold standard for quantitative blood flow measurement. However, it is expensive, cannot provide a real-time assessment, requires additional sedation, and exposes the patient to ionizing radiation. The aim of this study was to investigate the feasibility of a novel technology for measuring pulmonary blood flow distribution in each lung by conventional X-ray pulmonary angiography and to compare its performance to that of lung perfusion scintigraphy. Methods Contrast-enhanced X-ray pulmonary angiography images were acquired at a frame rate of 30 frames per second. The baseline mask image, obtained before contrast agent injection, was subtracted from subsequent, consecutive images. The time-signal intensity curves of two regions of interest, established at each lung field, were obtained on a frame-to-frame basis. The net increase in signal intensity within each region at the torrent period during the second cardiac cycle before contrast agent enhancement over the total lung field was measured, and the right-to-left ratio of the signal intensity was calculated. The right-to-left ratio obtained with this approach was compared to that obtained with scintigraphy. Agreement of the right-to-left ratio between X-ray angiography and lung scintigraphy measurements was assessed using linear fitting with the Pearson correlation coefficient. Result The calculation of the right-to-left ratio of pulmonary blood flow by our kinetic model was feasible for seven children as a pilot study. The right-to-left ratio of pulmonary blood flow distribution calculated from pulmonary angiography was in good agreement with that of lung perfusion scintigraphy, with a Pearson correlation coefficient of 0.91 and a slope of linear fit of 1.2 (p<0.005). Conclusion The novel diagnostic technology using X-ray pulmonary angiography from our kinetic model can feasibly quantify the right-to-left ratio of pulmonary blood flow distribution. This technology may serve as a substitute for lung perfusion scintigraphy, which is quite beneficial for small children susceptible to radiation exposure.


1957 ◽  
Vol 191 (3) ◽  
pp. 446-452 ◽  
Author(s):  
Hans G. Borst ◽  
James L. Whittenberger ◽  
Erik Berglund ◽  
Maurice McGregor

Effects of hypoxia and of hypercapnia on pulmonary blood flow distribution were examined in 19 dogs. The blood flow through each lung was continuously recorded; the test gas was administered to one lung, and the other lung was used as the control. Low oxygen gas mixtures were administered to one lung for periods of 2–47 minutes. When constriction occurred, it began within one-half minute after the gas administration was started and reached a plateau within 8–20 minutes. Vasodilation was never observed. In most animals no vasomotor effect of hypoxia was found early in the experiment (less than 6 hr. after induction of anesthesia), but seven of the early nonreactors became positive later in the experiment. After 6–8 hours from induction of anesthesia, all animals tested showed a vasoconstrictor response to hypoxia. The administration to one lung of 5 or 10% carbon dioxide for 2–10 minutes was always accompanied by vasoconstriction in that lung. In dogs that showed unilateral pulmonary vasoconstriction during hypoxia, further vasoconstriction was produced by adding 5% carbon dioxide. Some of the contradictory results of other investigators may be explained by the refractory period observed in these experiments.


Sign in / Sign up

Export Citation Format

Share Document