scholarly journals Nitric oxide and cutaneous active vasodilation during heat stress in humans

1998 ◽  
Vol 85 (3) ◽  
pp. 824-829 ◽  
Author(s):  
D. L. Kellogg ◽  
C. G. Crandall ◽  
Y. Liu ◽  
N. Charkoudian ◽  
J. M. Johnson

Whether nitric oxide (NO) is involved in cutaneous active vasodilation during hyperthermia in humans is unclear. We tested for a role of NO in this process during heat stress (water-perfused suits) in seven healthy subjects. Two forearm sites were instrumented with intradermal microdialysis probes. One site was perfused with the NO synthase inhibitor N G-nitro-l-arginine methyl ester (l-NAME) dissolved in Ringer solution to abolish NO production. The other site was perfused with Ringer solution only. At those sites, skin blood flow (laser-Doppler flowmetry) and sweat rate were simultaneously and continuously monitored. Cutaneous vascular conductance, calculated from laser-Doppler flowmetry and mean arterial pressure, was normalized to maximal levels as achieved by perfusion with the NO donor nitroprusside through the microdialysis probes. Under normothermic conditions,l-NAME did not significantly reduce cutaneous vascular conductance. During hyperthermia, with skin temperature held at 38–38.5°C, internal temperature rose from 36.66 ± 0.10 to 37.34 ± 0.06°C ( P < 0.01). Cutaneous vascular conductance at untreated sites increased from 12 ± 2 to 44 ± 5% of maximum, but only rose from 13 ± 2 to 30 ± 5% of maximum at l-NAME-treated sites ( P < 0.05 between sites) during heat stress. l-NAME had no effect on sweat rate ( P > 0.05). Thus cutaneous active vasodilation requires functional NO synthase to achieve full expression.

2002 ◽  
Vol 93 (4) ◽  
pp. 1215-1221 ◽  
Author(s):  
D. L. Kellogg ◽  
Y. Liu ◽  
K. McAllister ◽  
C. Friel ◽  
P. E. Pérgola

To test the hypothesis that bradykinin effects cutaneous active vasodilation during hyperthermia, we examined whether the increase in skin blood flow (SkBF) during heat stress was affected by blockade of bradykinin B2 receptors with the receptor antagonist HOE-140. Two adjacent sites on the forearm were instrumented with intradermal microdialysis probes for local delivery of drugs in eight healthy subjects. HOE-140 was dissolved in Ringer solution (40 μM) and perfused at one site, whereas the second site was perfused with Ringer alone. SkBF was monitored by laser-Doppler flowmetry (LDF) at both sites. Mean arterial pressure (MAP) was monitored from a finger, and cutaneous vascular conductance (CVC) was calculated (CVC = LDF/MAP). Water-perfused suits were used to control body temperature and evoke hyperthermia. After hyperthermia, both microdialysis sites were perfused with 28 mM nitroprusside to effect maximal vasodilation. During hyperthermia, CVC increased at HOE-140 (69 ± 2% maximal CVC, P < 0.01) and untreated sites (65 ± 2% maximal CVC, P < 0.01). These responses did not differ between sites ( P > 0.05). Because the bradykinin B2-receptor antagonist HOE-140 did not alter SkBF responses to heat stress, we conclude that bradykinin does not mediate cutaneous active vasodilation.


1997 ◽  
Vol 272 (5) ◽  
pp. H2173-H2179 ◽  
Author(s):  
H. Y. Chang

To determine the contribution of nitric oxide (NO) to the vasodilator response induced by salbutamol in diaphragmatic microcirculation, we studied a diaphragmatic preparation in anesthetized rats. With bicarbonate-buffered Ringer solution continuously suffusing the diaphragm, laser-Doppler flowmetry was used to record microvascular blood flow (QLDF). The drugs were applied to the surface of the diaphragm. Salbutamol (3.2 x 10(-7)-10(-4) M), isoproterenol (3.2 x 10(-8)-3.2 x 10(-6) M), and forskolin (3.2 x 10(-7)-10(-5) M) each elicited a concentration-dependent increase in QLDF. The vasodilator response induced by salbutamol (3.2 x 10(-7), 10(-6), and 3.2 x 10(-6) M) was attenuated by a 15-min suffusion of N omega-nitro-L-arginine (L-NNA, 10(-4) M), and pretreatment with L-arginine (10(-2) M) could restore salbutamol-induced vasodilator responses. Salbutamol-induced vasodilation was also abolished by propranolol (10(-5) M). Similarly, the vasodilator response elicited by isoproterenol (3.2 x 10(-8), 10(-7), and 3.2 x 10(-7) M) and forskolin (3.2 x 10(-7), 10(-6), and 3.2 x 10(-6) M) was inhibited by L-NNA (10(-4) M). In contrast, the vasodilator response induced by adenosine (10(-6), 10(-5), and 10(-4) M) was not affected by L-NNA (10(-4) M). These data indicate that in rat diaphragmatic microcirculation salbutamol-induced vasodilation may be partly mediated by beta-adrenoceptors on the endothelium. Moreover, these data suggest that an elevation of cyclic AMP in the endothelium may cause release of NO.


2012 ◽  
Vol 113 (10) ◽  
pp. 1512-1518 ◽  
Author(s):  
Dean L. Kellogg ◽  
Joan L. Zhao ◽  
Yubo Wu ◽  
John M. Johnson

VPAC2 receptors sensitive to vasoactive intestinal polypeptide (VIP) and pituitary adenylyl cyclase activating polypeptide (PACAP), PAC1 receptors sensitive to PACAP, and nitric oxide (NO) generation by NO synthase (NOS) are all implicated in cutaneous active vasodilation (AVD) through incompletely defined mechanisms. We hypothesized that VPAC2/PAC1 receptor activation and NO are synergistic and interdependent in AVD and tested our hypothesis by examining the effects of VPAC2/PAC1 receptor blockade with and without NOS inhibition during heat stress. The VPAC2/PAC1 antagonist, pituitary adenylate cyclase activating peptide 6–38 (PACAP6–38) and the NOS inhibitor, NG-nitro-l-arginine methyl ester (l-NAME) were administered by intradermal microdialysis. PACAP6–38, l-NAME, a combination of PACAP6–38 and l-NAME, or Ringer's solution alone were perfused at four separate sites. Skin blood flow was monitored by laser-Doppler flowmetry at each site. Body temperature was controlled with water-perfused suits. Blood pressure was monitored by Finapres, and cutaneous vascular conductance (CVC) calculated (CVC = laser-Doppler flowmetry/mean arterial pressure). The protocol began with a 5- to 10-min baseline period without antagonist perfusion, followed by perfusion of PACAP6–38, l-NAME, or combined PACAP6–38 and l-NAME at the different sites in normothermia (45 min), followed by 3 min of whole body cooling. Whole body heating was then performed to induce heat stress and activate AVD. Finally, 58 mM sodium nitroprusside were perfused at all sites to effect maximal vasodilation for normalization of blood flow data. No significant differences in CVC (normalized to maximum) were found among Ringer's PACAP6–38, l-NAME, or combined antagonist sites during normothermia ( P > 0.05 among sites) or cold stress ( P > 0.05 among sites). CVC responses at all treated sites were attenuated during AVD ( P < 0.05 vs. Ringer's). Attenuation was greater at l-NAME and combined PACAP6–38- and l-NAME-treated sites than at PACAP6–38 sites ( P > 0.05). Because responses did not differ between l-NAME and combined treatment sites ( P > 0.05), we conclude that VPAC2/PAC1 receptors require NO in series to effect AVD.


2001 ◽  
Vol 91 (5) ◽  
pp. 2407-2411 ◽  
Author(s):  
D. L. Kellogg ◽  
Y. Liu ◽  
P. E. Pérgola

To test whether the contribution of endothelin-B (ET-B) receptors to resting vascular tone differs between genders, we administered the ET-B receptor antagonist BQ-788 into the forearm skin of 11 male and 11 female subjects by intradermal microdialysis. Skin blood flow was measured using laser-Doppler flowmetry at the microdialysis site. The probe was perfused with Ringer solution alone, followed by BQ-788 (150 nM) and finally sodium nitroprusside (28 mM) to effect maximal cutaneous vasodilation. Cutaneous vascular conductance (CVC) was calculated (laser-Doppler flowmetry/mean arterial pressure) and normalized to maximal levels (%max). In male subjects, baseline CVC was (mean ± SE) 19 ± 3%max and increased to 26 ± 5%max with BQ-788 ( P < 0.05 vs. baseline). In female subjects, baseline CVC was 13 ± 1%max and decreased to 10 ± 1%max in response to BQ-788. CVC responses to BQ-788 differed with gender ( P < 0.05); thus the contribution of ET-B receptors to resting cutaneous vascular tone differs between men and women. In men, ET-B receptors mediate tonic vasoconstriction, whereas, in women, ET-B receptors mediate tonic vasodilation.


2005 ◽  
Vol 98 (2) ◽  
pp. 629-632 ◽  
Author(s):  
D. L. Kellogg ◽  
J. L. Zhao ◽  
U. Coey ◽  
J. V. Green

Acetylcholine (ACh) can effect vasodilation by several mechanisms, including activation of endothelial nitric oxide (NO) synthase and prostaglandin (PG) production. In human skin, exogenous ACh increases both skin blood flow (SkBF) and bioavailable NO levels, but the relative increase is much greater in SkBF than NO. This led us to speculate ACh may dilate cutaneous blood vessels through PGs, as well as NO. To test this hypothesis, we performed a study in 11 healthy people. We measured SkBF by laser-Doppler flowmetry (LDF) at four skin sites instrumented for intradermal microdialysis. One site was treated with ketorolac (Keto), a nonselective cyclooxygenase antagonist. A second site was treated with NG-nitro-l-arginine methyl ester (l-NAME) to inhibit NO synthase. A third site was treated with a combination of Keto and l-NAME. The fourth site was an untreated control site. After the three treated sites received the different inhibiting agents, ACh was administered to all four sites by intradermal microdialysis. Finally, sodium nitroprusside (SNP) was administered to all four sites. Mean arterial pressure (MAP) was monitored by Finapres, and cutaneous vascular conductance (CVC) was calculated (CVC = LDF/MAP). For data analysis, CVC values for each site were normalized to their respective maxima as effected by SNP. The results showed that both Keto and l-NAME each attenuated the vasodilation induced by exogenous ACh (ACh control = 79 ± 4% maximal CVC, Keto = 55 ± 7% maximal CVC, l-NAME = 46 ± 6% maximal CVC; P < 0.05, ACh vs. Keto or l-NAME). The combination of the two agents produced an even greater attenuation of ACh-induced vasodilation (31 ± 5% maximal CVC; P < 0.05 vs. all other sites). We conclude that a portion of the vasodilation effected by exogenous ACh in skin is due to NO; however, a significant portion is also mediated by PGs.


2009 ◽  
Vol 107 (5) ◽  
pp. 1438-1444 ◽  
Author(s):  
Dean L. Kellogg ◽  
Joan L. Zhao ◽  
Yubo Wu

Nitric oxide (NO) participates in the cutaneous vasodilation caused by increased local skin temperature (Tloc) and whole body heat stress in humans. In forearm skin, endothelial NO synthase (eNOS) participates in vasodilation due to elevated Tloc and neuronal NO synthase (nNOS) participates in vasodilation due to heat stress. To explore the relative roles and interactions of these isoforms, we examined the effects of a relatively specific eNOS inhibitor, Nω-amino-l-arginine (LNAA), and a specific nNOS inhibitor, Nω-propyl-l-arginine (NPLA), both separately and in combination, on skin blood flow (SkBF) responses to increased Tloc and heat stress in two protocols. In each protocol, SkBF was monitored by laser-Doppler flowmetry (LDF) and mean arterial pressure (MAP) by Finapres. Cutaneous vascular conductance (CVC) was calculated (CVC = LDF/MAP). Intradermal microdialysis was used to treat one site with 5 mM LNAA, another with 5 mM NPLA, a third with combined 5 mM LNAA and 5 mM NPLA (Mix), and a fourth site with Ringer only. In protocol 1, Tloc was controlled with combined LDF/local heating units. Tloc was increased from 34°C to 41.5°C to cause local vasodilation. In protocol 2, after a period of normothermia, whole body heat stress was induced (water-perfused suits). At the end of each protocol, all sites were perfused with 58 mM nitroprusside to effect maximal vasodilation for data normalization. In protocol 1, at Tloc = 34°C, CVC did not differ between sites ( P > 0.05). LNAA and Mix attenuated CVC increases at Tloc = 41.5°C to similar extents ( P < 0.05, LNAA or Mix vs. untreated or NPLA). In protocol 2, in normothermia, CVC did not differ between sites ( P > 0.05). During heat stress, NPLA and Mix attenuated CVC increases to similar extents, but no significant attenuation occurred with LNAA ( P < 0.05, NPLA or Mix vs. untreated or LNAA). In forearm skin, eNOS mediates the vasodilator response to increased Tloc and nNOS mediates the vasodilator response to heat stress. The two isoforms do not appear to interact during either response.


2014 ◽  
Vol 117 (3) ◽  
pp. 277-283 ◽  
Author(s):  
Patricia J. Choi ◽  
Vienna E. Brunt ◽  
Naoto Fujii ◽  
Christopher T. Minson

Cutaneous hyperemia in response to rapid skin local heating to 42°C has been used extensively to assess microvascular function. However, the response is dependent on both nitric oxide (NO) and endothelial-derived hyperpolarizing factors (EDHFs), and increases cutaneous vascular conductance (CVC) to ∼90–95% maximum in healthy subjects, preventing the study of potential means to improve cutaneous function. We sought to identify an improved protocol for isolating NO-dependent dilation. We compared nine heating protocols (combinations of three target temperatures: 36°C, 39°C, and 42°C, and three rates of heating: 0.1°C/s, 0.1°C/10 s, 0.1°C/min) in order to select two protocols to study in more depth ( protocol 1; N = 6). Then, CVC was measured at four microdialysis sites receiving: 1) lactated Ringer solution (Control), 2) 50-mM tetraethylammonium (TEA) to inhibit EDHFs, 3) 20-mM nitro-L-arginine methyl ester (L-NAME) to inhibit NO synthase, and 4) TEA+L-NAME, in response to local heating either to 39°C at 0.1°C/s ( protocol 2; N = 10) or 42°C at 0.1°C/min ( protocol 3; N = 8). Rapid heating to 39°C increased CVC to 43.1 ± 5.2%CVCmax (Control), which was attenuated by L-NAME (11.4 ± 2.8%CVCmax; P < 0.001) such that 82.8 ± 4.2% of the plateau was attributable to NO. During gradual heating, 81.5 ± 3.3% of vasodilation was attributable to NO at 40°C, but at 42°C only 32.7 ± 7.8% of vasodilation was attributable to NO. TEA+L-NAME attenuated CVC beyond L-NAME at temperatures >40°C (43.4 ± 4.5%CVCmax at 42°C, P < 0.001 vs. L-NAME), suggesting a role of EDHFs at higher temperatures. Our findings suggest local heating to 39°C offers an improved approach for isolating NO-dependent dilation and/or assessing perturbations that may improve microvascular function.


2008 ◽  
Vol 295 (1) ◽  
pp. H123-H129 ◽  
Author(s):  
Dean L. Kellogg ◽  
Joan L. Zhao ◽  
Yubo Wu

Nitric oxide (NO) participates in locally mediated vasodilation induced by increased local skin temperature (Tloc) and in sympathetically mediated vasodilation during whole body heat stress. We hypothesized that endothelial NOS (eNOS) participates in the former, but not the latter, response. We tested this hypothesis by examining the effects of the eNOS antagonist NG-amino-l-arginine (l-NAA) on skin blood flow (SkBF) responses to increased Tloc and whole body heat stress. Microdialysis probes were inserted into forearm skin for drug delivery. One microdialysis site was perfused with l-NAA in Ringer solution and a second site with Ringer solution alone. SkBF [laser-Doppler flowmetry (LDF)] and blood pressure [mean arterial pressure (MAP)] were monitored, and cutaneous vascular conductance (CVC) was calculated (CVC = LDF ÷ MAP). In protocol 1, Tloc was controlled with LDF/local heating units. Tloc initially was held at 34°C and then increased to 41.5°C. In protocol 2, after a normothermic period, whole body heat stress was induced (water-perfused suits). At the end of both protocols, 58 mM sodium nitroprusside was perfused at both microdialysis sites to cause maximal vasodilation for data normalization. In protocol 1, CVC at 34°C Tloc did not differ between l-NAA-treated and untreated sites ( P > 0.05). Local skin warming to 41.5°C Tloc increased CVC at both sites. This response was attenuated at l-NAA-treated sites ( P < 0.05). In protocol 2, during normothermia, CVC did not differ between l-NAA-treated and untreated sites ( P > 0.05). During heat stress, CVC rose to similar levels at l-NAA-treated and untreated sites ( P > 0.05). We conclude that eNOS is predominantly responsible for NO generation in skin during responses to increased Tloc, but not during reflex responses to whole body heat stress.


2016 ◽  
Vol 41 (8) ◽  
pp. 879-887 ◽  
Author(s):  
Nicole E. Moyen ◽  
Jenna M. Burchfield ◽  
Cory L. Butts ◽  
Jordan M. Glenn ◽  
Matthew A. Tucker ◽  
...  

The purpose of this study was to evaluate the effect of obesity and mild hypohydration on local sweating (LSR) and cutaneous vascular conductance (CVC) responses during passive heat stress in females. Thirteen obese (age, 24 ± 4 years; 45.4% ± 5.2% body fat) and 12 nonobese (age, 22 ± 2 years; 25.1% ± 3.9% body fat) females were passively heated (1.0 °C rectal temperature increase) while either euhydrated (EUHY) or mildly hypohydrated (HYPO; via fluid restriction). Chest and forearm LSR (ventilated capsule) and CVC (Laser Doppler flowmetry) onset, sensitivity, and plateau/steady state were recorded as mean body temperature increased (ΔTb). Participants began trials EUHY (urine specific gravity, Usg = 1.009 ± 0.006) or HYPO (Usg = 1.025 ± 0.004; p < 0.05), and remained EUHY or HYPO. Independent of obesity, HYPO decreased sweat sensitivity at the chest (HYPO = 0.79 ± 0.35, EUHY = 0.95 ± 0.39 Δmg·min−1·cm−2/°C ΔTb) and forearm (HYPO = 0.82 ± 0.39, EUHY = 1.06 ± 0.34 Δmg·min−1·cm−2/°C ΔTb); forearm LSR plateau was also decreased (HYPO = 0.66 ± 0.19, EUHY = 0.78 ± 0.23 mg·min−1·cm−2; all p < 0.05). Overall, obese females had lower chest-sweat sensitivity (0.72 ± 0.35 vs. 1.01 ± 0.33 Δmg·min−1·cm−2/°C ΔTb) and plateau (0.55 ± 0.27 vs. 0.80 ± 0.25 mg·min−1·cm−2; p < 0.05). While hypohydrated, obese females had a lower chest LSR (p < 0.05) versus nonobese females midway (0.45 ± 0.26 vs. 0.73 ± 0.23 mg·min−1·cm−2) and at the end (0.53 ± 0.27 vs. 0.81 ± 0.24 mg·min−1·cm−2) of heating. Furthermore, HYPO (relative to the EUHY trials) led to a greater decrease in CVC sensitivity in obese (–28 ± 27 Δ% maximal CVC/°C ΔTb) versus nonobese females (+9.2 ± 33 Δ% maximal CVC/°C ΔTb; p < 0.05). In conclusion, mild hypohydration impairs females’ sweating responses during passive heat stress, and this effect is exacerbated when obese.


Sign in / Sign up

Export Citation Format

Share Document