Chest wall kinematics and respiratory muscle action in walking healthy humans

1999 ◽  
Vol 87 (3) ◽  
pp. 938-946 ◽  
Author(s):  
A. Sanna ◽  
F. Bertoli ◽  
G. Misuri ◽  
F. Gigliotti ◽  
I. Iandelli ◽  
...  

We studied chest wall kinematics and respiratory muscle action in five untrained healthy men walking on a motor-driven treadmill at 2 and 4 miles/h with constant grade (0%). The chest wall volume (Vcw), assessed by using the ELITE system, was modeled as the sum of the volumes of the lung-apposed rib cage (Vrc,p), diaphragm-apposed rib cage (Vrc,a), and abdomen (Vab). Esophageal and gastric pressures were measured simultaneously. Velocity of shortening ( V di) and power [W˙di = diaphragm pressure (Pdi) × V di] of the diaphragm were also calculated. During walking, the progressive increase in end-inspiratory Vcw ( P < 0.05) resulted from an increase in end-inspiratory Vrc,p and Vrc,a ( P < 0.01). The progressive decrease ( P < 0.05) in end-expiratory Vcw was entirely due to the decrease in end-expiratory Vab ( P < 0.01). The increase in Vrc,a was proportionally slightly greater than the increase in Vrc,p, consistent with minimal rib cage distortion (2.5 ± 0.2% at 4 miles/h). The Vcw end-inspiratory increase and end-expiratory decrease were accounted for by inspiratory rib cage (RCM,i) and abdominal (ABM) muscle action, respectively. The pressure developed by RCM,i and ABM and Pdi progressively increased ( P < 0.05) from rest to the highest workload. The increase in V di, more than the increase in the change in Pdi, accounted for the increase inW˙di. In conclusion, we found that, in walking healthy humans, the increase in ventilatory demand was met by the recruitment of the inspiratory and expiratory reserve volume. ABM action accounted for the expiratory reserve volume recruitment. We have also shown that the diaphragm acts mainly as a flow generator. The rib cage distortion, although measurable, is minimized by the coordinated action of respiratory muscles.

PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e35965 ◽  
Author(s):  
Antonella LoMauro ◽  
Simona Pochintesta ◽  
Marianna Romei ◽  
Maria Grazia D'Angelo ◽  
Antonio Pedotti ◽  
...  

2006 ◽  
Vol 188 (1) ◽  
pp. 63-73 ◽  
Author(s):  
I. Romagnoli ◽  
M. Gorini ◽  
F. Gigliotti ◽  
R. Bianchi ◽  
B. Lanini ◽  
...  

1997 ◽  
Vol 83 (4) ◽  
pp. 1256-1269 ◽  
Author(s):  
A. Aliverti ◽  
S. J. Cala ◽  
R. Duranti ◽  
G. Ferrigno ◽  
C. M. Kenyon ◽  
...  

Aliverti, A., S. J. Cala, R. Duranti, G. Ferrigno, C. M. Kenyon, A. Pedotti, G. Scano, P. Sliwinski, Peter T. Macklem, and S. Yan. Human respiratory muscle actions and control during exercise. J. Appl. Physiol. 83(4): 1256–1269, 1997.—We measured pressures and power of diaphragm, rib cage, and abdominal muscles during quiet breathing (QB) and exercise at 0, 30, 50, and 70% maximum workload (W˙max) in five men. By three-dimensional tracking of 86 chest wall markers, we calculated the volumes of lung- and diaphragm-apposed rib cage compartments (Vrc,p and Vrc,a, respectively) and the abdomen (Vab). End-inspiratory lung volume increased with percentage of W˙max as a result of an increase in Vrc,p and Vrc,a. End-expiratory lung volume decreased as a result of a decrease in Vab. ΔVrc,a/ΔVab was constant and independent ofW˙max. Thus we used ΔVab/time as an index of diaphragm velocity of shortening. From QB to 70%W˙max, diaphragmatic pressure (Pdi) increased ∼2-fold, diaphragm velocity of shortening 6.5-fold, and diaphragm workload 13-fold. Abdominal muscle pressure was ∼0 during QB but was equal to and 180° out of phase with rib cage muscle pressure at all percent W˙max. Rib cage muscle pressure and abdominal muscle pressure were greater than Pdi, but the ratios of these pressures were constant. There was a gradual inspiratory relaxation of abdominal muscles, causing abdominal pressure to fall, which minimized Pdi and decreased the expiratory action of the abdominal muscles on Vrc,a gradually, minimizing rib cage distortions. We conclude that from QB to 0% W˙max there is a switch in respiratory muscle control, with immediate recruitment of rib cage and abdominal muscles. Thereafter, a simple mechanism that increases drive equally to all three muscle groups, with drive to abdominal and rib cage muscles 180° out of phase, allows the diaphragm to contract quasi-isotonically and act as a flow generator, while rib cage and abdominal muscles develop the pressures to displace the rib cage and abdomen, respectively. This acts to equalize the pressures acting on both rib cage compartments, minimizing rib cage distortion .


2020 ◽  
Vol 65 (9) ◽  
pp. 1285-1294
Author(s):  
Jéssica Danielle Medeiros da Fonsêca ◽  
Vanessa Regiane Resqueti ◽  
Kadja Benício ◽  
Valéria Soraya de Farias Sales ◽  
Luciana Fontes Silva da Cunha Lima ◽  
...  

1987 ◽  
Vol 63 (3) ◽  
pp. 951-961 ◽  
Author(s):  
D. R. Hillman ◽  
K. E. Finucane

The interaction of forces that produce chest wall motion and lung volume change is complex and incompletely understood. To aid understanding we have developed a simple model that allows prediction of the effect on chest wall motion of changes in applied forces. The model is a lever system on which the forces generated actively by the respiratory muscles and passively by impedances of rib cage, lungs, abdomen, and diaphragm act at fixed sites. A change in forces results in translational and/or rotational motion of the lever; motion represents volume change. The distribution and magnitude of passive relative to active forces determine the locus and degree of rotation and therefore the effect of an applied force on motion of the chest wall, allowing the interaction of diaphragm, rib cage, and abdomen to be modeled. Analysis of moments allow equations to be derived that express the effect on chest wall motion of the active component in terms of the passive components. These equations may be used to test the model by comparing predicted with empirical behavior. The model is simple, appears valid for a variety of respiratory maneuvers, is useful in interpreting relative motion of rib cage and abdomen and may be useful in quantifying the effective forces acting on the rib cage.


1995 ◽  
Vol 83 (4) ◽  
pp. 835-843. ◽  
Author(s):  
David O. Warner ◽  
Michael J. Joyner ◽  
Erik L. Ritman

Background The pattern of respiratory muscle use during halothane-induced anesthesia differs markedly among species breathing quietly. In humans, halothane accentuates phasic activity in rib cage and abdominal expiratory muscles, whereas activity in the parasternal intercostal muscles is abolished. In contrast, halothane abolishes phasic expiratory muscle activity during quiet breathing in dogs, but parasternal muscle activity is maintained. Respiratory muscle responses to CO2 rebreathing were measured in halothane-anesthetized dogs to determine if species differences present during quiet breathing persist over a wide range of central respiratory drive. Methods Chronic electromyogram electrodes were implanted in three expiratory agonists (the triangularis sterni, transversus abdominis, and external oblique muscles) and three inspiratory agonists (the parasternal intercostal muscle, costal and crural diaphragm) of six mongrel dogs. After a 1-month recovery period, the dogs were anesthetized in the supine position with halothane. The rebreathing response was determined by Read's method during anesthesia with stable 1 and 2 minimum alveolar end-tidal concentrations of halothane. CO2 concentrations were measured in the rebreathing bag using an infrared analyzer. Chest wall motion was measured by fast three-dimensional computed tomographic scanning. Results Halothane concentration did not significantly affect the slope of the relationship between minute ventilation (VE) and PCO2 (0.34 +/- 0.04 [M +/- SE] and 0.28 +/- 0.05 l.min-1.mmHg-1 during 1 and 2 minimum alveolar concentration anesthesia, respectively). However, 2 minimum alveolar concentration anesthesia did significantly decrease the calculated VE at a PCO2 of 60 mmHg (from 7.4 +/- 1.2 to 4.0 +/- 0.6 l.min-1), indicating a rightward shift in the response relationship. No electromyographic activity was observed in any expiratory muscle before rebreathing. Rebreathing produced electromyographic activity in at least one expiratory muscle in only two dogs. Rebreathing significantly increased electromyographic activity in all inspiratory agonists. Rebreathing significantly increased inspiratory thoracic volume change (delta Vth), with percentage of delta Vth attributed to outward rib cage displacement increasing over the course of rebreathing during 1 minimum alveolar concentration anesthesia (from 33 +/- 6% to 48 +/- 2% of delta Vth). Conclusions Rebreathing did not produce expiratory muscle activation in most dogs, demonstrating that the suppression of expiratory muscle activity observed at rest persists at high levels of ventilatory drive. Other features of the rebreathing response also differed significantly from previous reports in halothane-anesthetized humans, including (1) an increase in the rib cage contribution to tidal volume during the course of rebreathing, (2) recruitment of parasternal intercostal activity by rebreathing, (3) differences in the response of ventilatory timing, and (4) the lack of effect of anesthetic depth on the slope of the ventilatory response. These marked species differences are further evidence that the dog is not a suitable model to study anesthetic effects on the activation of human respiratory muscles.


2017 ◽  
Vol 242 ◽  
pp. 1-7 ◽  
Author(s):  
Rafaela Barros de Sá ◽  
Maíra Florentino Pessoa ◽  
Ana Gabriela Leal Cavalcanti ◽  
Shirley Lima Campos ◽  
César Amorim ◽  
...  

2004 ◽  
Vol 47 (1) ◽  
pp. 70-84 ◽  
Author(s):  
Kathryn P. Connaghan ◽  
Christopher A. Moore ◽  
Masahiko Higashakawa

The development of respiratory drive for vocalization was studied by observing chest wall kinematics longitudinally in 4 typically developing children from the age of 9 to 48 months. Measurements of the relative contribution of rib cage and abdominal movement during vocalization (i.e., babbling and true words) and rest breathing were obtained every 3 months using respiratory plethysmography (Respitrace TM ). Extending earlier findings in 15-month-olds, 2 methods of analysis of rib cage and abdominal movement were used: (a) a dynamic index of the strength of coupling between the rib cage and abdomen, and (b) a classification scheme describing the moment-by-moment changes in each of the 2 components (C. A. Moore, T. J. Caulfield, & J. R. Green, 2001). The developmental course of relative chest wall kinematics differed between vocalization and rest breathing. The coupling of rib cage and abdomen during vocalization weakened significantly with development, whereas it remained consistently strong for rest breathing throughout the observed period. The developmental changes in frequency of occurrence of relative moment-by-moment changes varied across movement type. The results support previous findings that speech breathing is distinct from rest breathing based on the relative contributions of the rib cage and abdomen. Longitudinal changes are likely responsive to anatomic development, including changes to rib cage shape and compliance.


Sign in / Sign up

Export Citation Format

Share Document