scholarly journals Effect of neuromuscular electrical stimulation on skeletal muscle size and function in patients with breast cancer receiving chemotherapy

2020 ◽  
Vol 128 (6) ◽  
pp. 1654-1665 ◽  
Author(s):  
Michael J. Toth ◽  
Thomas B. Voigt ◽  
Timothy W. Tourville ◽  
Shannon M. Prior ◽  
Blas A. Guigni ◽  
...  

This is the first study to evaluate whether neuromuscular electrical stimulation (NMES) can be used as an exercise surrogate to improve skeletal muscle fiber size or function in cancer patients receiving treatment. We show that NMES promoted muscle fiber hypertrophy and fiber types shift but had minimal effects on single-fiber contractility and reduced subsarcolemmal mitochondria.

2020 ◽  
Vol 48 (10) ◽  
pp. 2429-2437
Author(s):  
Michael J. Toth ◽  
Timothy W. Tourville ◽  
Thomas B. Voigt ◽  
Rebecca H. Choquette ◽  
Bradley M. Anair ◽  
...  

Background: Anterior cruciate ligament (ACL) injuries and reconstruction (ACLR) promote quadriceps muscle atrophy and weakness that can persist for years, suggesting the need for more effective rehabilitation programs. Whether neuromuscular electrical stimulation (NMES) can be used to prevent maladaptations in skeletal muscle size and function is unclear. Purpose: To examine whether early NMES use, started soon after an injury and maintained through 3 weeks after surgery, can preserve quadriceps muscle size and contractile function at the cellular (ie, fiber) level in the injured versus noninjured leg of patients undergoing ACLR. Study Design: Randomized controlled trial; Level of evidence, 1. Methods: Patients (n = 25; 12 men/13 women) with an acute, first-time ACL rupture were randomized to NMES (5 d/wk) or sham (simulated microcurrent electrical nerve stimulation; 5 d/wk) treatment to the quadriceps muscles of their injured leg. Bilateral biopsies of the vastus lateralis were performed 3 weeks after surgery to measure skeletal muscle fiber size and contractility. Quadriceps muscle size and strength were assessed 6 months after surgery. Results: A total of 21 patients (9 men/12 women) completed the trial. ACLR reduced single muscle fiber size and contractility across all fiber types ( P < .01 to P < .001) in the injured compared with noninjured leg 3 weeks after surgery. NMES reduced muscle fiber atrophy ( P < .01) through effects on fast-twitch myosin heavy chain (MHC) II fibers ( P < .01 to P < .001). NMES preserved contractility in slow-twitch MHC I fibers ( P < .01 to P < .001), increasing maximal contractile velocity ( P < .01) and preserving power output ( P < .01), but not in MHC II fibers. Differences in whole muscle strength between groups were not discerned 6 months after surgery. Conclusion: Early NMES use reduced skeletal muscle fiber atrophy in MHC II fibers and preserved contractility in MHC I fibers. These results provide seminal, cellular-level data demonstrating the utility of the early use of NMES to beneficially modify skeletal muscle maladaptations to ACLR. Clinical Relevance: Our results provide the first comprehensive, cellular-level evidence to show that the early use of NMES mitigates early skeletal muscle maladaptations to ACLR. Registration: NCT02945553 (ClinicalTrials.gov identifier)


2016 ◽  
Vol 35 (6) ◽  
pp. 1359-1365 ◽  
Author(s):  
Michael J. Toth ◽  
Damien M. Callahan ◽  
Mark S. Miller ◽  
Timothy W. Tourville ◽  
Sarah B. Hackett ◽  
...  

1983 ◽  
Vol 245 (2) ◽  
pp. H265-H275 ◽  
Author(s):  
B. G. Mackie ◽  
R. L. Terjung

Blood flow to fast-twitch red (FTR), fast-twitch white (FTW), and slow-twitch red (STR) muscle fiber sections of the gastrocnemius-plantaris-soleus muscle group was determined using 15 +/- 3-microns microspheres during in situ stimulation in pentobarbital-anesthetized rats. Steady-state blood flows were assessed during the 10th min of contraction using twitch (0.1, 0.5, 1, 3, and 5 Hz) and tetanic (7.5, 15, 30, 60, and 120/min) stimulation conditions. In addition, an earlier blood flow determination was begun at 3 min (twitch series) or at 30 s (tetanic series) of stimulation. Blood flow was highest in the FTR (220-240 ml X min-1 X 100 g-1), intermediate in the STR (140), and lowest in the FTW (70-80) section during tetanic contraction conditions estimated to coincide with the peak aerobic function of each fiber type. These blood flows are fairly proportional to the differences in oxidative capacity among fiber types. Further, their absolute values are similar to those predicted from the relationship between blood flow and oxidative capacity found by others for dog and cat muscles. During low-frequency contraction conditions, initial blood flow to the FTR and STR sections were excessively high and not dependent on contraction frequency. However, blood flows subsequently decreased to values in keeping with the relative energy demands. In contrast, FTW muscle did not exhibit this time-dependent relative hyperemia. Thus, besides the obvious quantitative differences between skeletal muscle fiber types, there are qualitative differences in blood flow response during contractions. Our findings establish that, based on fiber type composition, a heterogeneity in blood flow distribution can occur within a whole muscle during contraction.


1997 ◽  
Vol 22 (4) ◽  
pp. 307-327 ◽  
Author(s):  
Robert S. Staron

This brief review attempts to summarize a number of studies on the delineation, development, and distribution of human skeletal muscle fiber types. A total of seven fiber types can be identified in human limb and trunk musculature based on the pH stability/ability of myofibrillar adenosine triphosphatase (mATPase). For most human muscles, mATPase-based fiber types correlate with the myosin heavy chain (MHC) content. Thus, each histochemically identified fiber has a specific MHC profile. Although this categorization is useful, it must be realized that muscle fibers are highly adaptable and that innumerable fiber type transients exist. Also, some muscles contain specific MHC isoforms and/or combinations that do not permit routine mATPase-based fiber typing. Although the major populations of fast and slow are, for the most part, established shortly after birth, subtle alterations take place throughout life. These changes appear to relate to alterations in activity and/or hormonal levels, and perhaps later in life, total fiber number. Because large variations in fiber type distribution can be found within a muscle and between individuals, interpretation of data gathered from human muscle is often difficult. Key words: aging, myosin heavy chains, myogenesis, myofibrillar adenosine triphosphate


Sign in / Sign up

Export Citation Format

Share Document