Hemodynamics of post-exercise vs. post hot water immersion recovery

Author(s):  
Michael A. Francisco ◽  
Cameron Colbert ◽  
Emily A. Larson ◽  
Dylan C. Sieck ◽  
John R. Halliwill ◽  
...  

This study sought to compare the hemodynamics of the recovery periods following exercise versus hot water immersion. Twelve subjects (6 F, 22.7 ± 0.8 y; BMI: 21.8 ± 2.1 kg·m-2) exercised for 60 minutes at 60% VO2peak or were immersed in 40.5oC water for 60 minutes on separate days, in random order. Measurements were made before, during, and for 60-minutes post-intervention (i.e., recovery) and included heart rate, arterial pressure, core temperature, and subjective measures. Brachial and superficial femoral artery blood flows were assessed using Doppler ultrasonography and cardiac output was measured using the acetylene wash-in method. Internal temperature increased to a similar extent during exercise and hot water immersion. Cardiac output and mean arterial pressure were greater during exercise than during hot water immersion (both p<0.01). Sustained reductions in mean arterial pressure compared to baseline were observed in both conditions during recovery (p<0.001 vs before each intervention). Cardiac output was similar during recovery between the interventions. Stroke volume was reduced throughout recovery following exercise, but not following hot water immersion (p<0.01). Brachial artery retrograde shear was reduced following hot water immersion, but not following exercise (Interaction; p=0.035). Antegrade shear in the superficial femoral artery was elevated compared to baseline (p=0.027) for 60 minutes following exercise, whereas it returned near baseline values (p=0.564) by 40 minutes following hot water immersion. Many of the changes observed during the post-exercise recovery period that are thought to contribute to long-term beneficial cardiovascular adaptations were also observed during the post-hot water immersion recovery period.

Author(s):  
Robert D. McIntyre ◽  
Michael J. Zurawlew ◽  
Samuel J. Oliver ◽  
Andrew T. Cox ◽  
Jessica A. Mee ◽  
...  

Author(s):  
Jack Paul Martin

Aims  This meta-analysis aims to evaluate the effectiveness of heat acclimation (HA) via hot water immersion protocols and their effect on time trial (TT) performance, heart rate (HRE, HRM and HRTT), rectal temperature (Tre), Rate of perceived exertion (RPE), psychological stress index (PhSI), thermal comfort (Tcomf), thermal sensation (Tsen) and maximum oxygen uptake (Vo2max).  Methods  Pubmed, Scopus, Sportdiscus and Web of Science databases were used alongside the grey matter sites Google Scholar and Researchgate. The databases were then searched for randomised control trials and mixed-method design studies. Two RTCs, six repeated measure design studies and one randomised crossover design study were included after screening a total of 50 titles and 28 full-text articles. Sample sizes range from 1 - 13 with all participants having not participated in any form of heat training 6 months before their inclusion in the study.  Results  The mean difference (MD) for Heart rate (HR) was -9.1125 BPM (95% CI p = 0.026) and was considered to be statistically significant. The MD for Rectal temperature (Tre) effect size was -0.3814 Tre (°C) (95% CI; p = 0.05). The MD for sweat rate was 0.085; (96% CI; p = 0.0179) The changes in RPE, PhSI, Tcomf and Tsen were too small to be considered statistically significant. There was no significant difference between pre and post HA for Vo2max and PV.  This meta-analysis implies that HA via HWI may improve tolerance to discomfort during heat exposure and thus subsequently improve physical performance during exercise in hot conditions. Conclusion  The primary finding of this meta-analysis is that athletic performance is improved with post-exercise hot water immersion heat acclimation training.  HWI HA protocols should focus on the following guidelines:  40-50 minutes of submaximal exercise (>65% of Vo2max) should be followed directly (within 10 minutes) by 40 minutes of hot water immersion at 40°C with the individual immersed up to their neck.  The HA protocol should last between 6-9 days with a single bout of HWI every day for this period. 


2020 ◽  
Vol 128 (4) ◽  
pp. 1012-1022 ◽  
Author(s):  
Cas J. Fuchs ◽  
Joey S. J. Smeets ◽  
Joan M. Senden ◽  
Antoine H. Zorenc ◽  
Joy P. B. Goessens ◽  
...  

The purpose of this study was to assess the impact of postexercise hot-water immersion on postprandial myofibrillar protein synthesis rates during recovery from a single bout of resistance-type exercise in healthy, young men. Twelve healthy, adult men (age: 23 ± 1 y) performed a single bout of resistance-type exercise followed by 20 min of water immersion of both legs. One leg was immersed in hot water [46°C: hot-water immersion (HWI)], while the other leg was immersed in thermoneutral water (30°C: CON). After water immersion, a beverage was ingested containing 20 g intrinsically L-[1-13C]-phenylalanine and L-[1-13C]-leucine labeled milk protein with 45 g of carbohydrates. In addition, primed continuous L-[ ring-2H5]-phenylalanine and L-[1-13C]-leucine infusions were applied, with frequent collection of blood and muscle samples to assess myofibrillar protein synthesis rates in vivo over a 5-h recovery period. Muscle temperature immediately after water immersion was higher in the HWI compared with the CON leg (37.5 ± 0.1 vs. 35.2 ± 0.2°C; P < 0.001). Incorporation of dietary protein-derived L-[1-13C]-phenylalanine into myofibrillar protein did not differ between the HWI and CON leg during the 5-h recovery period (0.025 ± 0.003 vs. 0.024 ± 0.002 MPE; P = 0.953). Postexercise myofibrillar protein synthesis rates did not differ between the HWI and CON leg based upon L-[1-13C]-leucine (0.050 ± 0.005 vs. 0.049 ± 0.002%/h; P = 0.815) and L-[ ring-2H5]-phenylalanine (0.048 ± 0.002 vs. 0.047 ± 0.003%/h; P = 0.877), respectively. Hot-water immersion during recovery from resistance-type exercise does not increase the postprandial rise in myofibrillar protein synthesis rates. In addition, postexercise hot-water immersion does not increase the capacity of the muscle to incorporate dietary protein-derived amino acids in muscle tissue protein during subsequent recovery. NEW & NOTEWORTHY This is the first study to assess the effect of postexercise hot-water immersion on postprandial myofibrillar protein synthesis rates and the incorporation of dietary protein-derived amino acids into muscle protein. We observed that hot-water immersion during recovery from a single bout of resistance-type exercise does not further increase myofibrillar protein synthesis rates or augment the postprandial incorporation of dietary protein-derived amino acids in muscle throughout 5 h of postexercise recovery.


2020 ◽  
Vol 52 (7S) ◽  
pp. 506-506
Author(s):  
Cas J. Fuchs ◽  
Joey S.J. Smeets ◽  
Joan M. Senden ◽  
Wouter D. van Marken Lichtenbelt ◽  
Lex B. Verdijk ◽  
...  

2020 ◽  
Author(s):  
Jack Martin

AIms This meta-analysis aims to evaluate the effectiveness of heat acclimation (HA) via hot water immersion protocols and their effect on time trial (TT) performance, heart rate (HRE, HRM and HRTT), rectal temperature (Tre), Rate of perceived exertion (RPE), psychological stress index (PhSI), thermal comfort (Tcomf), thermal sensation (Tsen) and maximum oxygen uptake (Vo2max). Methods Pubmed, Scopus, Sportdiscus and Web of Science databases were used alongside the grey matter sites Google Scholar and Researchgate. The databases were then searched for randomised control trials and mixed-method design studies. Two RTCs, six repeated measure design studies and one randomised crossover design study were included after screening a total of 50 titles and 28 full-text articles. Sample sizes range from 1 - 13 with all participants having not participated in any form of heat training 6 months before their inclusion in the study. Results The mean difference (MD) for Heart rate (HR) was -9.1125 BPM (95% CI p = 0.026) and was considered to be statistically significant. The MD for Rectal temperature (Tre) effect size was -0.3814 Tre (°C) (95% CI; p = 0.05). The MD for sweat rate was 0.085; (96% CI; p = 0.0179)The changes in RPE, PhSI, Tcomf and Tsen were too small to be considered statistically significant. There was no significant difference between pre and post HA for Vo2max and PV. This meta-analysis implies that HA via HWI may improve tolerance to discomfort during heat exposure and thus subsequently improve physical performance during exercise in hot conditions.Conclusion The primary finding of this meta-analysis is that athletic performance is improved with post-exercise hot water immersion heat acclimation training. HWI HA protocols should focus on the following guidelines: 40-50 minutes of submaximal exercise (&gt;65% of Vo2max) should be followed directly (within 10 minutes) by 40 minutes of hot water immersion at 40°C with the individual immersed up to their neck. The HA protocol should last between 6-9 days with a single bout of HWI every day for this period.


Author(s):  
R. G. Mansfield ◽  
S. P. Hoekstra ◽  
J. J. Bill ◽  
Christof A. Leicht

Abstract Purpose Passive elevation of body temperature can induce an acute inflammatory response that has been proposed to be beneficial; however, it can be perceived as uncomfortable. Here, we investigate whether local cooling of the upper body during hot water immersion can improve perception without inhibiting the interleukin-6 (IL-6) response. Methods Nine healthy male participants (age: 22 ± 1 years, body mass: 83.4 ± 9.4 kg) were immersed up to the waist for three 60-min water immersion conditions: 42 °C hot water immersion (HWI), 42 °C HWI with simultaneous upper-body cooling using a fan (FAN), and 36 °C thermoneutral water immersion (CON). Blood samples to determine IL-6 plasma concentration were collected pre- and post-water immersion; basic affect and thermal comfort were assessed throughout the intervention. Results Plasma IL-6 concentration was higher for HWI and FAN when compared with CON (P < 0.01) and did not differ between HWI and FAN (P = 0.22; pre to post, HWI: 1.0 ± 0.6 to 1.5 ± 0.7 pg·ml−1, FAN: 0.7 ± 0.5 to 1.1 ± 0.5 pg·ml−1, CON: 0.5 ± 0.2 to 0.5 ± 0.2 pg·ml−1). At the end of immersion, basic affect was lowest for HWI (HWI: − 1.8 ± 2.0, FAN: 0.2 ± 1.6, CON 1.0 ± 2.1, P < 0.02); thermal comfort for HWI was in the uncomfortable range (3.0 ± 1.0, P < 0.01 when compared with FAN and CON), whereas FAN (0.7 ± 0.7) and CON (-0.2 ± 0.7) were in the comfortable range. Conclusion Local cooling of the upper body during hot water immersion improves basic affect and thermal comfort without inhibiting the acute IL-6 response.


Sign in / Sign up

Export Citation Format

Share Document