scholarly journals Exercise training reverses aging-induced impairment of myogenic constriction in skeletal muscle arterioles

2015 ◽  
Vol 118 (7) ◽  
pp. 904-911 ◽  
Author(s):  
Payal Ghosh ◽  
Fredy R. Mora Solis ◽  
James M. Dominguez ◽  
Scott A. Spier ◽  
Anthony J. Donato ◽  
...  

To investigate whether exercise training can reverse age-related impairment of myogenic vasoconstriction in skeletal muscle arterioles, young (4 mo) and old (22 mo) male Fischer 344 rats were randomly assigned to either sedentary or exercise-trained groups. The roles of the endothelium and Kv1 channels in age- and exercise training-induced adaptations of myogenic responses were assessed through evaluation of pressure-induced constriction in endothelium-intact and denuded soleus muscle arterioles in the presence and absence of the Kv1 channel blocker, correolide. Exercise training enhanced myogenic constriction in arterioles from both old and young rats. In arterioles from old rats, exercise training restored myogenic constriction to a level similar to that of arterioles from young sedentary rats. Removal of the endothelium did not alter myogenic constriction of arterioles from young sedentary rats, but reduced myogenic constriction in arterioles from young exercise-trained rats. In contrast, endothelial removal had no effect on myogenic constriction of arterioles from old exercise-trained rats, but increased myogenic vasoconstriction in old sedentary rats. The effect of Kv1 channel blockade was also dependent on age and training status. In arterioles from young sedentary rats, Kv1 blockade had little effect on myogenic constriction, whereas in old sedentary rats Kv1 blockade increased myogenic constriction. After exercise training, Kv1 channel blockade increased myogenic constriction in arterioles from both young and old rats. Thus exercise training restores myogenic constriction of arterioles from old rats and enhances myogenic constriction from young rats through adaptations of the endothelium and smooth muscle Kv1 channels.

2007 ◽  
Vol 292 (6) ◽  
pp. H3119-H3127 ◽  
Author(s):  
Scott A. Spier ◽  
Michael D. Delp ◽  
John N. Stallone ◽  
James M. Dominguez ◽  
Judy M. Muller-Delp

Flow-induced vasodilation is attenuated with old age in rat skeletal muscle arterioles. The purpose of this study was to determine whether diminished cyclooxygenase (COX) signaling contributes to the age-induced attenuation of flow-induced vasodilation in gastrocnemius muscle arterioles and to determine whether, and through which mechanism(s), exercise training restores this deficit in old rats. Fischer 344 rats (3 and 22 mo old) were assigned to a sedentary or exercise-trained group. First-order arterioles were isolated from the gastrocnemius muscles, cannulated, and pressurized to 70 cmH2O. Diameter changes were determined in response to graded increases in intraluminal flow in the presence and absence of nitric oxide synthase (NOS) inhibition [10−5 M NG-nitro-l-arginine methyl ester (l-NAME)], COX inhibition (10−5 M indomethacin), or combination NOS (10−5 Ml-NAME) plus COX (10−5 M indomethacin) inhibition. Aging reduced flow-induced vasodilation in gastrocnemius muscle arterioles. Exercise training restored responsiveness to flow in arterioles of aged rats and enhanced flow-induced vasodilation in arterioles from young rats. l-NAME inhibition of flow-induced vasodilation was greater in arterioles from old rats compared with those from young rats and was increased after exercise training in arterioles from both young and old rats. Although the indomethacin-sensitive portion of flow-induced dilation was not altered by age or training, both COX-1 mRNA expression and PGI2 production increased with training in arterioles from old rats. These data demonstrate that exercise training restores flow-induced vasodilation in gastrocnemius muscle arterioles from old rats and enhances flow-induced vasodilation in gastrocnemius muscle arterioles from young rats. In arterioles from both old and young rats, the exercise training-induced enhancement of flow-induced dilation occurs primarily through a NOS mechanism.


1992 ◽  
Vol 73 (5) ◽  
pp. 1932-1938 ◽  
Author(s):  
I. Nasrullah ◽  
R. S. Mazzeo

The present investigation examined the extent to which 15 wk of endurance training could influence immune function in young, middle-aged, and older animals. Forty-eight male Fischer 344 rats were divided into trained and untrained groups. Training consisted of treadmill running at 75% maximal running capacity for 1 h/day, 5 days/wk, for 15 wk. Animals were killed at 8, 17, and 27 mo, at which time splenocytes were isolated. The capacity for lymphocyte proliferation in response to mitogen (concanavalin A, ConA), interleukin-2 (IL-2) production, and cytolytic activity against YAC-1 target cells was determined. ConA-induced proliferation declined significantly with age. Training suppressed the proliferative response in the young (-41%) and middle-aged animals (-27%) compared with the age-matched controls; however, training improved this response (+58%) in the older group. IL-2 production followed a pattern similar to that for mitogen-induced proliferation, such that production declined with age and was reduced with training in young and middle-aged animals but was significantly more improved in the older animals than in age-matched controls. The ability to lyse target cells, measured as percent cytotoxicity, declined steadily with advancing age at all effector-to-target cell ratios tested: 52, 14, and -16% for 8-, 17-, and 27-mo-old rats, respectively. It was concluded that the capacity for ConA-induced splenocyte proliferation, IL-2 production, and cytolytic activity declines significantly with advancing age. Furthermore, 15 wk of endurance training suppressed proliferation and IL-2 production in young animals but improved these responses in older animals. Training had no effect on cytolytic activity.


1995 ◽  
Vol 268 (4) ◽  
pp. L539-L545 ◽  
Author(s):  
A. T. Canada ◽  
L. A. Herman ◽  
S. L. Young

The role of animal age in the lethal response to > 98% oxygen has been extensively studied, with the observation that neonatal rats were resistant while mature animals were sensitive. Antioxidant enzymes increased during the oxygen exposure in neonatal but not in mature rats, suggesting they were important in the age-related toxicity difference. Because no studies had compared the response of mature and old rats to hyperoxia, we exposed Fischer 344 rats, aged 2 and 27 mo, to > 98% oxygen. Unexpectedly, the old rats lived significantly longer than young, 114 and 65 h, respectively. No histopathological differences were found to explain the results. Of the antioxidants, only glutathione peroxidase (GPx) activity was higher in the lungs of nonexposed old rats. Superoxide dismutase (SOD) was higher in the young, results opposite those expected if SOD was important in the lethality difference. No antioxidant induction occurred in the old oxygen-exposed rats. These results suggest that although there may be a role for GPx, mechanisms in addition to antioxidant protection and inflammation are likely responsible for the age-related difference in hyperoxia lethality.


2019 ◽  
Vol 317 (3) ◽  
pp. R397-R406 ◽  
Author(s):  
Petey W. Mumford ◽  
Matthew A. Romero ◽  
Shelby C. Osburn ◽  
Paul A. Roberson ◽  
Christopher G. Vann ◽  
...  

Long interspersed element-1 (LINE-1) is a retrotransposon capable of replicating and inserting LINE-1 copies into the genome. Others have reported skeletal muscle LINE-1 markers are higher in older versus younger mice, but data are lacking in other species. Herein, gastrocnemius muscle from male Fischer 344 rats that were 3, 12, and 24 mo old ( n = 9 per group) were analyzed for LINE-1 mRNA, DNA, promoter methylation and DNA accessibility. qPCR primers were designed for active (L1.3) and inactive (L1.Tot) LINE-1 elements as well as part of the ORF1 sequence. L1.3, L1.Tot, and ORF1 mRNAs were higher ( P < 0.05) in 12/24 versus 3-mo-old rats. L1.3 DNA was higher in the 24-mo-old rats versus other groups, and ORF1 DNA was greater in 12/24 versus 3-mo-old rats. ORF1 protein was higher in 12/24 versus 3-mo-old rats. RNA-sequencing indicated mRNAs related to DNA methylation ( Tet1) and histone acetylation ( Hdac2) were lower in 24 versus 3-mo-old rats. L1.3 DNA accessibility was higher in 24-mo-old versus 3-mo-old rats. No age-related differences in nuclear histone deacetylase (HDAC) activity existed, although nuclear DNA methyltransferase (DNMT) activity was lower in 12/24 versus 3-mo-old rats ( P < 0.05). In summary, markers of skeletal muscle LINE-1 activity increase across the age spectrum of rats, and this may be related to deficits in DNMT activity and/or increased LINE-1 DNA accessibility.


1996 ◽  
Vol 270 (2) ◽  
pp. R365-R372 ◽  
Author(s):  
D. A. Podolin ◽  
T. T. Gleeson ◽  
R. S. Mazzeo

The contributions of three major gluconeogenic regulators, glucagon (10(-7) M), alpha-adrenergic agonist phenylephrine (10(-5) M), and beta-agonist isoproterenol (10(-5) M) to hepatic glucose synthesis in liver slices from Fischer 344 rats were examined in relation to age and endurance training. Young (4 mo), middle-aged (12 mo), and old (22 mo) male Fischer 344 rats (n = 66) were divided into trained or sedentary groups. Trained animals were run 10 wk on a treadmill at 75% of maximal capacity, 1 h/day, 5 days/wk. Animals were killed at rest, and sections of liver were removed and sliced in a tissue microtome. Slices were incubated in L-[U-14C]lactic acid, Ringer solution, and one of the aforementioned gluconeogenic regulators. Rates of lactate incorporation into glucose and glycogen were significantly greater in young compared with old animals for all three regulators in both trained and untrained animals. Training elicited a 35, 52, and 63% improvement in lactate incorporation into glucose compared with untrained when the livers of young (16.9 +/- 1.2 vs. 10.9 +/- 1.1 mumol.g protein-1.min-1), middle-aged (12.8 +/- 1.3 vs. 6.1 +/- 1.2 mumol.g protein-1.min-1), and old (11.2 +/- 1.1 vs. 4.1 +/- 0.6 mumol.g protein-1.min-1) animals, respectively, were incubated in glucagon. Rates with phenylephrine followed a similar pattern to that with glucagon across age and training, but absolute rates were significantly lower. No training effect in gluconeogenic rate was found when liver was incubated in the presence of isoproterenol. It is concluded that the gluconeogenic capacity of liver declines with age regardless of the gluconeogenic regulator and that training was able to partially offset age-related declines in glucagon-stimulated and alpha-receptor-mediated gluconeogenesis.


1984 ◽  
Vol 246 (3) ◽  
pp. E266-E270 ◽  
Author(s):  
H. J. Armbrecht ◽  
L. R. Forte ◽  
B. P. Halloran

The purpose of this study was to determine how serum 1,25(OH)2D, renal production of [3H]1,25(OH)2D and [3H]24,25(OH)2D from [3H]25(OH)D, and serum IPTH change with age and dietary Ca restriction. Male Fischer 344 rats aged 3, 13, and 25 mo were placed on either a high-Ca (1.2%) or low-Ca (0.02%) vitamin D-replete diet. After 4 wk, serum was collected, and renal conversion of [3H]25(OH)D3 to [3H]1,25(OH)2D3 and [3H]24,25(OH)2D3 was measured in vitro using isolated renal cortical slices. Serum 1,25(OH)2D and renal [3H]1,25(OH)2D3 production were markedly reduced in 13- and 25-mo-old rats compared with 3-mo-old rats fed the low-Ca diet. In 3-mo-old rats, feeding the low-Ca diet increased serum 1,25(OH)2D by 18-fold and renal [3H]1,25(OH)2D3 production by threefold compared with feeding the high-Ca diet. In 25-mo-old rats, dietary Ca had no effect on these parameters. Renal [3H]24,25(OH)2D3 production was increased in the 13- and 25-mo-old rats compared with the 3-mo-old rats. Serum IPTH increased with age regardless of diet and was significantly increased by the low-Ca diet in 3-mo but not in 13- or 25-mo-old rats. The changes in serum 1,25(OH)2D and renal [3H]1,25(OH)2D3 production observed in this study may account for the previously observed age-related decline in intestinal Ca absorption in this animal model.


2011 ◽  
Vol 110 (5) ◽  
pp. 1171-1180 ◽  
Author(s):  
Daniel W. Trott ◽  
John W. Seawright ◽  
Meredith J. Luttrell ◽  
Christopher R. Woodman

We tested the hypothesis that age-related endothelial dysfunction in rat soleus muscle feed arteries (SFA) is mediated in part by NAD(P)H oxidase-derived reactive oxygen species (ROS). SFA from young (4 mo) and old (24 mo) Fischer 344 rats were isolated and cannulated for examination of vasodilator responses to flow and acetylcholine (ACh) in the absence or presence of a superoxide anion (O2−) scavenger (Tempol; 100 μM) or an NAD(P)H oxidase inhibitor (apocynin; 100 μM). In the absence of inhibitors, flow- and ACh-induced dilations were attenuated in SFA from old rats compared with young rats. Tempol and apocynin improved flow- and ACh-induced dilation in SFA from old rats. In SFA from young rats, Tempol and apocynin had no effect on flow-induced dilation, and apocynin attenuated ACh-induced dilation. To determine the role of hydrogen peroxide (H2O2), dilator responses were assessed in the absence and presence of catalase (100 U/ml) or PEG-catalase (200 U/ml). Neither H2O2 scavenger altered flow-induced dilation, whereas both H2O2 scavengers blunted ACh-induced dilation in SFA from young rats. In old SFA, catalase improved flow-induced dilation whereas PEG-catalase improved ACh-induced dilation. Compared with young SFA, in response to exogenous H2O2 and NADPH, old rats exhibited blunted dilation and constriction, respectively. Immunoblot analysis revealed that the NAD(P)H oxidase subunit gp91phox protein content was greater in old SFA compared with young. These results suggest that NAD(P)H oxidase-derived reactive oxygen species contribute to impaired endothelium-dependent dilation in old SFA.


1987 ◽  
Vol 253 (6) ◽  
pp. H1566-H1572 ◽  
Author(s):  
R. K. Handa ◽  
S. P. Duckles

Vascular adrenergic responses were examined in the hindlimb perfused with blood at constant flow using pentobarbital-anesthetized male Fischer 344 rats aged 6, 12, 20, and 24 mo. The increase in hindlimb perfusion pressure to lumbar sympathetic nerve stimulation was significantly smaller in 20- and 24-mo-old rats than in younger animals, whereas vasoconstrictor responses to intraarterial administration of norepinephrine, L-phenylephrine, and methoxamine were reduced only in the 24-mo-old animals. Thus neurogenic vasoconstriction in the hindlimb is reduced at 20 mo of age, whereas there is a more generalized postjunctional loss of adrenergic responsiveness at 24 mo. In the presence of the beta-adrenoceptor antagonist, propranolol, vasoconstrictor responses to exogenous norepinephrine did not differ when 12- and 20-mo-old animals were compared. Furthermore, in the presence of propranolol the nerve-mediated rise in hindlimb perfusion pressure also did not differ in 12- and 20-mo-old rats. Blockade of neuronal norepinephrine uptake with cocaine produced a greater potentiation of vasoconstrictor responses to both nerve stimulation and exogenous norepinephrine in the older rats. Therefore, the reduced nerve-mediated vasoconstriction in 20-mo-old rats may be due to neuronal activation of beta-adrenoceptors as well as enhanced neuronal norepinephrine reuptake.


1987 ◽  
Vol 247 (2) ◽  
pp. 329-334 ◽  
Author(s):  
W J Carter ◽  
W F Kelly ◽  
F H Faas ◽  
M E Lynch ◽  
C A Perry

Ventricular myosin ATPase activity, V1 isomyosin content and serum T3 (tri-iodothyronine) values decrease with age in male Fischer 344 rats. To determine if the age decrement in ATPase activity and V1 isomyosin content are caused by decreased T3 levels or an age-related decrease in V1 isomyosin induction by T3, 3-, 12- and 24-month-old male Fischer 344 rats were given constant T3 infusions by osmotic minipump. Rats at all ages were given 0.75, 5 and 15 micrograms(/100 g per 24 h) doses of T3, whereas 12- and 24-month-old rats were given an additional 0.4 microgram dose. In control rats, T3 levels decreased from 97 +/- 2.7 at 3 months to 75 +/- 4.7 ng/100 ml at 24 months. Likewise, Ca2+-activated myosin ATPase activity decreased from 1.04 +/- 0.05 to 0.68 +/- 0.05 mumol of Pi/min per mg of protein, and the relative proportion of V1 of isomyosin decreased from 90 +/- 4.0 to 26 +/- 2.0%. The lowest (0.4 microgram) T3 dose, which was sufficient to restore T3 levels in 24-month-old animals to 3-month control values, abolished the age decrement in myosin ATPase activity and markedly increased the proportion of V1 isomyosin present in the ventricle. These findings indicate that the senescent ventricle responds readily to small doses of T3 and strongly suggest that the age decrement in serum T3 levels is sufficient to contribute to the age-related decrease in myosin ATPase activity and V1 isomyosin content. Since these parameters correlate with ventricular contractility, the age decrement in T3 levels may also contribute to the decreased ventricular contractility and cardiac output observed in senescent rats.


Sign in / Sign up

Export Citation Format

Share Document