scholarly journals Skeletal muscle LINE-1 retrotransposon activity is upregulated in older versus younger rats

2019 ◽  
Vol 317 (3) ◽  
pp. R397-R406 ◽  
Author(s):  
Petey W. Mumford ◽  
Matthew A. Romero ◽  
Shelby C. Osburn ◽  
Paul A. Roberson ◽  
Christopher G. Vann ◽  
...  

Long interspersed element-1 (LINE-1) is a retrotransposon capable of replicating and inserting LINE-1 copies into the genome. Others have reported skeletal muscle LINE-1 markers are higher in older versus younger mice, but data are lacking in other species. Herein, gastrocnemius muscle from male Fischer 344 rats that were 3, 12, and 24 mo old ( n = 9 per group) were analyzed for LINE-1 mRNA, DNA, promoter methylation and DNA accessibility. qPCR primers were designed for active (L1.3) and inactive (L1.Tot) LINE-1 elements as well as part of the ORF1 sequence. L1.3, L1.Tot, and ORF1 mRNAs were higher ( P < 0.05) in 12/24 versus 3-mo-old rats. L1.3 DNA was higher in the 24-mo-old rats versus other groups, and ORF1 DNA was greater in 12/24 versus 3-mo-old rats. ORF1 protein was higher in 12/24 versus 3-mo-old rats. RNA-sequencing indicated mRNAs related to DNA methylation ( Tet1) and histone acetylation ( Hdac2) were lower in 24 versus 3-mo-old rats. L1.3 DNA accessibility was higher in 24-mo-old versus 3-mo-old rats. No age-related differences in nuclear histone deacetylase (HDAC) activity existed, although nuclear DNA methyltransferase (DNMT) activity was lower in 12/24 versus 3-mo-old rats ( P < 0.05). In summary, markers of skeletal muscle LINE-1 activity increase across the age spectrum of rats, and this may be related to deficits in DNMT activity and/or increased LINE-1 DNA accessibility.

2015 ◽  
Vol 118 (7) ◽  
pp. 904-911 ◽  
Author(s):  
Payal Ghosh ◽  
Fredy R. Mora Solis ◽  
James M. Dominguez ◽  
Scott A. Spier ◽  
Anthony J. Donato ◽  
...  

To investigate whether exercise training can reverse age-related impairment of myogenic vasoconstriction in skeletal muscle arterioles, young (4 mo) and old (22 mo) male Fischer 344 rats were randomly assigned to either sedentary or exercise-trained groups. The roles of the endothelium and Kv1 channels in age- and exercise training-induced adaptations of myogenic responses were assessed through evaluation of pressure-induced constriction in endothelium-intact and denuded soleus muscle arterioles in the presence and absence of the Kv1 channel blocker, correolide. Exercise training enhanced myogenic constriction in arterioles from both old and young rats. In arterioles from old rats, exercise training restored myogenic constriction to a level similar to that of arterioles from young sedentary rats. Removal of the endothelium did not alter myogenic constriction of arterioles from young sedentary rats, but reduced myogenic constriction in arterioles from young exercise-trained rats. In contrast, endothelial removal had no effect on myogenic constriction of arterioles from old exercise-trained rats, but increased myogenic vasoconstriction in old sedentary rats. The effect of Kv1 channel blockade was also dependent on age and training status. In arterioles from young sedentary rats, Kv1 blockade had little effect on myogenic constriction, whereas in old sedentary rats Kv1 blockade increased myogenic constriction. After exercise training, Kv1 channel blockade increased myogenic constriction in arterioles from both young and old rats. Thus exercise training restores myogenic constriction of arterioles from old rats and enhances myogenic constriction from young rats through adaptations of the endothelium and smooth muscle Kv1 channels.


2002 ◽  
Vol 93 (5) ◽  
pp. 1685-1690 ◽  
Author(s):  
Christopher R. Woodman ◽  
Elmer M. Price ◽  
M. Harold Laughlin

We tested the hypothesis that aging decreases endothelium-dependent vasodilation in feed arteries perfusing rat skeletal muscle. In addition, we tested the hypothesis that attenuated vasodilator responses are associated with decreased endothelial nitric oxide synthase (eNOS) and superoxide dismutase-1 (SOD-1) expression. Soleus feed arteries (SFA) and gastrocnemius feed arteries (GFA) were isolated from young (4 mo) and old (24 mo) male Fischer 344 rats. Feed arteries from the right hindlimb were cannulated with two glass micropipettes for examination of endothelium-dependent [acetylcholine (ACh)] and endothelium-independent [adenosine (Ado) or sodium nitroprusside (SNP)] vasodilator function. Feed arteries from the left hindlimb were frozen and used to assess eNOS and SOD-1 protein and mRNA expression. In SFA, endothelium-dependent dilation to ACh was reduced in old rats (0.9 ± 0.04 vs. 0.8 ± 0.03), whereas dilator responses to Ado and SNP were similar in SFA of young and old rats. In GFA, vasodilator responses to ACh, Ado, and SNP were not altered by age. eNOS and SOD-1 protein expression declined with age in SFA (−71 and −54%, respectively) but not in GFA. eNOS and SOD-1 mRNA expression were not altered by age in SFA or GFA. Collectively, these data indicate aging induces muscle-specific impairment of endothelium-dependent vascular function in SFA.


1992 ◽  
Vol 73 (5) ◽  
pp. 1932-1938 ◽  
Author(s):  
I. Nasrullah ◽  
R. S. Mazzeo

The present investigation examined the extent to which 15 wk of endurance training could influence immune function in young, middle-aged, and older animals. Forty-eight male Fischer 344 rats were divided into trained and untrained groups. Training consisted of treadmill running at 75% maximal running capacity for 1 h/day, 5 days/wk, for 15 wk. Animals were killed at 8, 17, and 27 mo, at which time splenocytes were isolated. The capacity for lymphocyte proliferation in response to mitogen (concanavalin A, ConA), interleukin-2 (IL-2) production, and cytolytic activity against YAC-1 target cells was determined. ConA-induced proliferation declined significantly with age. Training suppressed the proliferative response in the young (-41%) and middle-aged animals (-27%) compared with the age-matched controls; however, training improved this response (+58%) in the older group. IL-2 production followed a pattern similar to that for mitogen-induced proliferation, such that production declined with age and was reduced with training in young and middle-aged animals but was significantly more improved in the older animals than in age-matched controls. The ability to lyse target cells, measured as percent cytotoxicity, declined steadily with advancing age at all effector-to-target cell ratios tested: 52, 14, and -16% for 8-, 17-, and 27-mo-old rats, respectively. It was concluded that the capacity for ConA-induced splenocyte proliferation, IL-2 production, and cytolytic activity declines significantly with advancing age. Furthermore, 15 wk of endurance training suppressed proliferation and IL-2 production in young animals but improved these responses in older animals. Training had no effect on cytolytic activity.


1995 ◽  
Vol 268 (4) ◽  
pp. L539-L545 ◽  
Author(s):  
A. T. Canada ◽  
L. A. Herman ◽  
S. L. Young

The role of animal age in the lethal response to > 98% oxygen has been extensively studied, with the observation that neonatal rats were resistant while mature animals were sensitive. Antioxidant enzymes increased during the oxygen exposure in neonatal but not in mature rats, suggesting they were important in the age-related toxicity difference. Because no studies had compared the response of mature and old rats to hyperoxia, we exposed Fischer 344 rats, aged 2 and 27 mo, to > 98% oxygen. Unexpectedly, the old rats lived significantly longer than young, 114 and 65 h, respectively. No histopathological differences were found to explain the results. Of the antioxidants, only glutathione peroxidase (GPx) activity was higher in the lungs of nonexposed old rats. Superoxide dismutase (SOD) was higher in the young, results opposite those expected if SOD was important in the lethality difference. No antioxidant induction occurred in the old oxygen-exposed rats. These results suggest that although there may be a role for GPx, mechanisms in addition to antioxidant protection and inflammation are likely responsible for the age-related difference in hyperoxia lethality.


2000 ◽  
Vol 279 (6) ◽  
pp. H2807-H2814 ◽  
Author(s):  
William E. Schutzer ◽  
Hong Xue ◽  
John F. Reed ◽  
Jean-Baptiste Roullet ◽  
Sharon Anderson ◽  
...  

β-Adrenergic receptor (β-AR)-mediated (cAMP-dependent) vasorelaxation declines with advancing age. It has been shown that angiotensin II (ANG II), a potent vasoconstrictor, enhances cAMP-mediated vasorelaxation. Therefore, we questioned whether ANG II could reverse age-related, impaired β-AR-mediated vasorelaxation and cAMP production. Pretreatment of aortic rings from 6-wk-old or 6-mo-old male Fischer 344 rats with ANG II significantly enhanced vasorelaxation induced by isoproterenol (Iso), a β-AR agonist, and forskolin, a direct activator of adenylyl cyclase, but not dibutyryl-cAMP or isobutylmethylxanthine. The ANG II effect was blocked by losartan but not PD-123319 and was not observed in the aortas from 12- and 24-mo-old animals. Iso-stimulated cAMP production in the aorta was enhanced in the presence of ANG II in the 6-wk-old and 6-mo-old age groups only. Results suggest ANG II cannot reverse the age-related impairment in β-AR-dependent vasorelaxation. We conclude aging may affect a factor common to both ANG II-receptors and β-AR signaling pathways or aging may impair cross-talk between these two receptor pathways.


1995 ◽  
Vol 268 (4) ◽  
pp. C952-C957 ◽  
Author(s):  
J. Yannariello-Brown ◽  
S. H. Chapman ◽  
W. F. Ward ◽  
T. C. Pappas ◽  
P. H. Weigel

Circulating hyaluronan (HA) levels were investigated as a function of age and diet in Fischer 344 male rats. A biphasic pattern of age-related changes was observed in rats fed ad libitum a diet in which the protein source was soya/fish meal. HA levels in 3- to 6- and 22- to 29-mo-old rats were not statistically different. However, HA levels in 12- to 20-mo-old rats were 10-29% of the levels in younger or aged adults. HA levels were also measured in rats fed ad libitum a semisynthetic diet in which the protein source was hydrolyzed casein. Whereas the two colonies exhibited similar biphasic age-related changes, HA levels differed 4- to 20-fold at every age examined. Caloric restriction affected HA levels in 19-mo-old casein-fed rats; HA levels were 2.3 times higher than age-matched controls and were not statistically different from young or aged animals. Serum and plasma HA levels were identical in the same individuals at all ages tested. These data suggest that HA turnover and metabolism in the rat are affected by age, dietary composition, and caloric intake.


1998 ◽  
Vol 85 (5) ◽  
pp. 1903-1908 ◽  
Author(s):  
Ronald R. Gomes ◽  
Frank W. Booth

We examined the age-related association in skeletal muscle between atrophy and expression of mRNAs encoding both the γ-subunit of the nicotinic acetylcholine receptor (AChR), and myogenin, a transcription factor that upregulates expression of the γ-subunit promoter. Gastrocnemius and biceps brachii muscles were collected from young (2-mo-old), adult (18-mo-old), and old (31-mo-old) Fischer 344/Brown Norway F1 generation cross male rats. In the gastrocnemius muscles of old vs. young and adult rats, lower muscle mass was accompanied by significantly elevated AChR γ-subunit and myogenin mRNA levels. In contrast, the biceps brachii muscle exhibited neither atrophy nor as drastic a change in AChR γ-subunit and myogenin mRNA levels with age. Expression of the AChR ε-subunit mRNA did not change with age in either gastrocnemius or biceps brachii muscles. Thus changes in skeletal muscle AChR γ-subunit and myogenin mRNA levels may be more related to atrophy than to chronological age in old rats.


2008 ◽  
Vol 33 (6) ◽  
pp. 1181-1191 ◽  
Author(s):  
Brent A. Baker ◽  
Melinda S. Hollander ◽  
Robert R. Mercer ◽  
Michael L. Kashon ◽  
Robert G. Cutlip

This study determined the age-related changes in acute events responsible for initiating skeletal muscle remodeling and (or) regeneration in the tibialis anterior muscle following a bout of stretch-shortening contractions (SSCs). Changes in muscle performance and morphology were quantified in young and old rats, following an acute exposure to adaptive SSCs at 6, 24, 48, 72, and 120 h postexposure (n = 6 for each age at each recovery period). Following SSC exposure, all performance measures were decreased in old rats throughout the 120 h acute phase. Estimates of edema were increased in the old vs. young exposed muscle at 120 h recovery. Both young and old rats displayed an increase in developmental myosin heavy chain (MHCdev+) labeling in the exposed muscle, indicating muscle regeneration. However, old rats displayed diminished MHCdev+ labeling, compared with young rats, suggesting limited remodeling and (or) regenerative capacity. Based on these data, diminished local muscle remodeling and (or) regeneration with aging may limit skeletal muscle adaptation following mechanical loading.


1987 ◽  
Vol 63 (1) ◽  
pp. 257-261 ◽  
Author(s):  
G. D. Cartee ◽  
R. P. Farrar

Old rats have a decreased hindlimb muscle respiratory capacity and whole-body maximal O2 consumption (VO2 max). The decline in spontaneous physical activity in old rats might contribute to these age-related changes. The magnitude of the age-related decline is not uniform in all skeletal muscle respiratory enzymes, and the decrease in palmitate oxidation is particularly great. This study was designed to determine if young and old rats subjected to the same exercise-training protocol would attain similar values for VO2 max and several markers of muscle respiratory capacity. Four- and 18-mo-old Fischer 344 rats underwent an identical 6-mo program of treadmill running. After training, both age groups had increased VO2 max above sedentary age-matched controls. However, the old trained rats had a lower VO2 max than identically trained young rats. In contrast to VO2 max, the two trained groups attained similar values for gastrocnemius citrate synthase, cytochrome oxidase, 3-hydroxyacyl-CoA dehydrogenase, palmitate oxidation, and total carnitine concentration. Thus, when the young and old rats performed an identical exercise protocol within the capacity of the old animals, differences in skeletal muscle respiratory capacity were eliminated. The dissimilarity in VO2 max between the identically trained groups was apparently caused by age-related differences in factors other than muscle respiratory capacity.


1978 ◽  
Vol 78 (2) ◽  
pp. 319-337 ◽  
Author(s):  
D L Schmucker ◽  
J S Mooney ◽  
A L Jones

Stereological analysis of hepatic fine structure in Fischer 344 male rats at 1, 6, 10, 16, 20, 25, and 30 mo of age revealed differences in the amounts and distributions of hepatocellular organelles as a function of sublobular location or animal age. Between 1 and 16 mo of age, both the centrolobular and periportal hepatocytes increased in volume by 65 and 35%, respectively. Subsequently, the cell volumes declined until the hepatocytes of 30-mo-old rats approached the size of those found in the youngest animals. Regardless of animal age, the centrolobular cells were consistently larger than the corresponding periportal hepatocytes. The cytoplasmic and ground substance compartments reflected similar changes in their volumes, although there was no significant alteration in the nuclear volume. The volumes of the mitochondrial and microbody compartments increased and decreased concomitant with the changes in average hepatocyte size. Both lobular zones in the 30-mo-old rats contained significantly smaller relative volumes of mitochondria than similar parenchyma in 16-mo-old animals. The volume density of the dense bodies (lysosomes) increased markedly in both lobular zones between 1 and 30 mo of age, confirming reports of an age-dependent increase in this organelle. The surface area of the endoplasmic reticulum in the centrolobular and periportal hepatocytes reached its maximum level in the 10-mo-old rats and subsequently declined to amounts which approximated those measured in the 1-mo-old animals. This age-related loss of intracellular membrane is attributable to a significant reduction in the surface area of the smooth-surfaced endoplasmic reticulum (SER) in animals beyond 16 mo of age. The amount of rough-surfaced endoplasmic reticulum (RER) in the periportal parenchymal cells was unaffected by aging, but the centrolobular hepatocytes of 30-mo-old animals contained 90% more RER than similar cells in the youngest rats. The centrolobular parenchyma contained more SER and the portal zones more RER throughout the age span studied. These quantitative data suggest that (a) certain hepatic fine structural parameters undergo marked changes as a function of animal age, (b) there exists a gradient in hepatocellular fine structure across the entire liver lobule, and (c) there are remarkable similarities in hepatocyte ultrastructure between very young and senescent animals, including cell size and the amount of SER.


Sign in / Sign up

Export Citation Format

Share Document