scholarly journals Prolonged muscle vibration increases stretch reflex amplitude, motor unit discharge rate, and force fluctuations in a hand muscle

2005 ◽  
Vol 99 (5) ◽  
pp. 1835-1842 ◽  
Author(s):  
Minoru Shinohara ◽  
Chet T. Moritz ◽  
Michael A. Pascoe ◽  
Roger M. Enoka

The purpose of this study was to compare the influence of prolonged vibration of a hand muscle on the amplitude of the stretch reflex, motor unit discharge rate, and force fluctuations during steady, submaximal contractions. Thirty-two young adults performed 10 isometric contractions at a constant force (5.0 ± 2.3% of maximal force) with the first dorsal interosseus muscle. Each contraction was held steady for 10 s, and then stretch reflexes were evoked. Subsequently, 20 subjects had vibration applied to the relaxed muscle for 30 min, and 12 subjects received no vibration. The muscle vibration induced a tonic vibration reflex. The intervention (vibration or no vibration) was followed by 2 sets of 10 constant-force contractions with applied stretches (After and Recovery trials). The mean electromyogram amplitude of the short-latency component of the stretch reflex increased by 33% during the After trials ( P < 0.01) and by 38% during the Recovery trials ( P < 0.01). The standard deviation of force during the steady contractions increased by 21% during the After trials ( P < 0.05) and by 28% during the Recovery trials ( P < 0.01). The discharge rate of motor units increased from 10.3 ± 2.7 pulses/s (pps) before vibration to 12.2 ± 3.1 pps ( P < 0.01) during the After trials and to 11.9 ± 2.6 pps during the Recovery trials ( P < 0.01). There was no change in force fluctuations or stretch reflex magnitude for the subjects in the Control group. The results indicate that prolonged vibration increased the short-latency component of the stretch reflex, the discharge rate of motor units, and the fluctuations in force during contractions by a hand muscle. These adjustments were necessary to achieve the target force due to the vibration-induced decrease in the force capacity of the muscle.

1995 ◽  
Vol 79 (6) ◽  
pp. 1908-1913 ◽  
Author(s):  
G. Kamen ◽  
S. V. Sison ◽  
C. C. Du ◽  
C. Patten

A reduction in maximal force production is a common observation in older individuals. In an effort to determine whether aging is accompanied by reductions in central motoneuron drive limiting motor performance, motor unit discharge records were obtained from seven young (21–33 yr) and seven older (> 67 yr) adults. Informed consent was obtained from all subjects. The task required the subject to perform a maximal abduction of the second digit under isometric conditions. Motor unit potentials in the first dorsal interosseous were monitored by using a selective four-wire needle electrode and identified off-line with the aid of a Dantec electromyograph. The maximal discharge rate in the older adults (31.1 impulses/s) was significantly smaller (P < 0.05) than that in the younger subjects (50.9 impulses/s). These findings suggest that reductions in maximal force capability in older adults are partially due to an impaired ability to fully drive the surviving motor units.


2000 ◽  
Vol 83 (1) ◽  
pp. 441-452 ◽  
Author(s):  
Wanxiang Yao ◽  
Rew J. Fuglevand ◽  
Roger M. Enoka

The purpose of the study was to determine the effect of motor-unit synchronization on the surface electromyogram (EMG) and isometric force using a computer model of muscle contraction. The EMG and force were simulated by generating muscle fiber action potentials, defining motor-unit mechanical characteristics and territories, estimating motor-unit action potentials, specifying motor-unit discharge times, and imposing various levels of motor-unit synchronization. The output (EMG and force) was simulated at 11 levels of excitation, ranging from 5 to 100% of maximum. To synchronize motor-unit activity, selected motor-unit discharge times were adjusted; however, the number of motor units recruited and the average discharge rate of each unit was constant across synchronization conditions for a given level of excitation. Two levels of synchronization were imposed on the discharge times: a moderate and a high level, which approximated the experimentally observed range of motor-unit synchronization. The moderate level of synchrony caused the average EMG to increase by ∼65%, whereas the high level caused a 130% increase in the EMG with respect to the no-synchrony condition. Neither synchrony condition influenced the magnitude of the average force. However, motor-unit synchronization did increase the amplitude of the fluctuations in the simulated force, especially at intermediate levels of excitation. In conclusion, motor-unit synchronization increased the amplitude of the average rectified EMG and decreased the steadiness of the force exerted by the muscle in simulated contractions.


2007 ◽  
Vol 97 (6) ◽  
pp. 3917-3925 ◽  
Author(s):  
G. Mochizuki ◽  
T. D. Ivanova ◽  
S. J. Garland

The purpose of this study was to determine the factors that influence the co-modulation of motor unit discharge rate in soleus muscles of both legs during upright standing. Single motor units were recorded from the left and right soleus muscles under three experimental conditions: standing quietly with the eyes open and closed, standing with the eyes closed while vibration was applied to one Achilles tendon, and swaying voluntarily or producing variable low-force isometric contractions at a frequency of 0.05 Hz. Correlations in motor unit discharge rate between left and right soleus motor units were assessed using common drive analysis. The results showed that common drive to motoneurons of the two muscles did not differ between standing with the eyes open or closed, but there was an order effect with the second task having significantly lower common drive than the first. Common drive was also significantly lower when vibration was applied to one leg compared with when no vibration was applied. Common drive was higher as subjects swayed anteriorly as compared with when they swayed posteriorly. There were no significant differences in common drive across phases of the variable isometric force contraction. Common drive was higher during voluntary sway than during variable force production; both of these values were significantly lower than those derived from the quiet standing task. These results suggest that proprioceptive and sub-cortical inputs contribute to the co-modulation of the firing rate of soleus motor unit pairs of the left and right leg during standing posture.


2005 ◽  
Vol 94 (4) ◽  
pp. 2878-2887 ◽  
Author(s):  
Carol J. Mottram ◽  
Evangelos A. Christou ◽  
François G. Meyer ◽  
Roger M. Enoka

The rate of change in the fluctuations in motor output differs during the performance of fatiguing contractions that involve different types of loads. The purpose of this study was to examine the contribution of frequency modulation of motor unit discharge to the fluctuations in the motor output during sustained contractions with the force and position tasks. In separate tests with the upper arm vertical and the elbow flexed to 1.57 rad, the seated subjects maintained either a constant upward force at the wrist (force task) or a constant elbow angle (position task). The force and position tasks were performed in random order at a target force equal to 3.6 ± 2.1% (mean ± SD) of the maximal voluntary contraction (MVC) force above the recruitment threshold of an isolated motor unit from the biceps brachii. Each subject maintained the two tasks for an identical duration (161 ± 93 s) at a mean target force of 22.4 ± 13.6% MVC. As expected, the rate of increase in the fluctuations in motor output (force task: SD for detrended force; position task: SD for vertical acceleration) was greater for the position task than the force task ( P < 0.001). The amplitude of the coefficient of variation (CV) and the power spectra for motor unit discharge were similar between tasks ( P > 0.1) and did not change with time ( P > 0.1), and could not explain the different rates of increase in motor output fluctuations for the two tasks. Nonetheless, frequency modulation of motor unit discharge differed during the two tasks and predicted ( P < 0.001) both the CV for discharge rate (force task: 1–3, 12–13, and 14–15 Hz; position task: 0–1, and 1–2 Hz) and the fluctuations in motor output (force task: 5–6, 9–10, 12–13, and 14–15 Hz; position task: 6–7, 14–15, 17–19, 20–21, and 23–24 Hz). Frequency modulation of motor unit discharge rate differed for the force and position tasks and influenced the ability to sustain steady contractions.


Author(s):  
Benjamin Ian Goodlich ◽  
Sean A Horan ◽  
Justin J Kavanagh

Serotonin (5-HT) is a neuromodulator that is critical for regulating the excitability of spinal motoneurons and the generation of muscle torque. However, the role of 5-HT in modulating human motor unit activity during rapid contractions has yet to be assessed. Nine healthy participants (23.7 ± 2.2 yr) ingested 8 mg of the competitive 5-HT2 antagonist cyproheptadine in a double-blinded, placebo-controlled, repeated-measures experiment. Rapid dorsiflexion contractions were performed at 30%, 50% and 70% of maximal voluntary contraction (MVC), where motor unit activity was assessed by high-density surface electromyographic decomposition. A second protocol was performed where a sustained, fatigue-inducing dorsiflexion contraction was completed prior to undertaking the same 30%, 50% and 70% MVC rapid contractions and motor unit analysis. Motor unit discharge rate (p < 0.001) and rate of torque development (RTD; p = 0.019) for the unfatigued muscle were both significantly lower for the cyproheptadine condition. Following the fatigue inducing contraction, cyproheptadine reduced motor unit discharge rate (p < 0.001) and RTD (p = 0.024), where the effects of cyproheptadine on motor unit discharge rate and RTD increased with increasing contraction intensity. Overall, these results support the viewpoint that serotonergic effects in the central nervous system occur fast enough to regulate motor unit discharge rate during rapid powerful contractions.


2005 ◽  
Vol 32 (4) ◽  
pp. 533-540 ◽  
Author(s):  
Brian L. Tracy ◽  
Katrina S. Maluf ◽  
Jennifer L. Stephenson ◽  
Sandra K. Hunter ◽  
Roger M. Enoka

2018 ◽  
Vol 120 (6) ◽  
pp. 3246-3256 ◽  
Author(s):  
Spencer A. Murphy ◽  
Francesco Negro ◽  
Dario Farina ◽  
Tanya Onushko ◽  
Matthew Durand ◽  
...  

Following stroke, hyperexcitable sensory pathways, such as the group III/IV afferents that are sensitive to ischemia, may inhibit paretic motor neurons during exercise. We quantified the effects of whole leg ischemia on paretic vastus lateralis motor unit firing rates during submaximal isometric contractions. Ten chronic stroke survivors (>1 yr poststroke) and 10 controls participated. During conditions of whole leg occlusion, the discharge timings of motor units were identified from decomposition of high-density surface electromyography signals during repeated submaximal knee extensor contractions. Quadriceps resting twitch responses and near-infrared spectroscopy measurements of oxygen saturation as an indirect measure of blood flow were made. There was a greater decrease in paretic motor unit discharge rates during the occlusion compared with the controls (average decrease for stroke and controls, 12.3 ± 10.0% and 0.1 ± 12.4%, respectively; P < 0.001). The motor unit recruitment thresholds did not change with the occlusion (stroke: without occlusion, 11.68 ± 5.83%MVC vs. with occlusion, 11.11 ± 5.26%MVC; control: 11.87 ± 5.63 vs. 11.28 ± 5.29%MVC). Resting twitch amplitudes declined similarly for both groups in response to whole leg occlusion (stroke: 29.16 ± 6.88 vs. 25.75 ± 6.78 Nm; control: 38.80 ± 13.23 vs 30.14 ± 9.64 Nm). Controls had a greater exponential decline (lower time constant) in oxygen saturation compared with the stroke group (stroke time constant, 22.90 ± 10.26 min vs. control time constant, 5.46 ± 4.09 min; P < 0.001). Ischemia of the muscle resulted in greater neural inhibition of paretic motor units compared with controls and may contribute to deficient muscle activation poststroke. NEW & NOTEWORTHY Hyperexcitable inhibitory sensory pathways sensitive to ischemia may play a role in deficient motor unit activation post stroke. Using high-density surface electromyography recordings to detect motor unit firing instances, we show that ischemia of the exercising muscle results in greater inhibition of paretic motor unit firing rates compared with controls. These findings are impactful to neurophysiologists and clinicians because they implicate a novel mechanism of force-generating impairment poststroke that likely exacerbates baseline weakness.


Physiotherapy ◽  
2019 ◽  
Vol 105 ◽  
pp. e46
Author(s):  
E. Martinez-Valdes ◽  
G. Boccia ◽  
M. Nawaz ◽  
F. Negro ◽  
A. Rainoldi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document