The use of doubly labeled milk protein to measure postprandial muscle protein synthesis rates in vivo in humans

2014 ◽  
Vol 117 (11) ◽  
pp. 1363-1370 ◽  
Author(s):  
Nicholas A. Burd ◽  
Naomi M. Cermak ◽  
Imre W. K. Kouw ◽  
Stefan H. Gorissen ◽  
Annemie P. Gijsen ◽  
...  

We aimed to determine the impact of precursor pool dilution on the assessment of postprandial myofibrillar protein synthesis rates (MPS). A Holstein dairy cow was infused with large amounts of L-[1-13C]phenylalanine and L-[1-13C]leucine, and the milk was collected and fractionated. The enrichment levels in the casein were 38.7 and 9.3 mole percent excess, respectively. In a subsequent human experiment, 11 older men (age: 71 ± 1 y, body mass index: 26 ± 0.1 kg·m−2) received a primed constant infusion of L-[ring-2H5]phenylalanine and L-[1-13C]leucine. Blood and muscle samples were collected before and after the ingestion of 20-g doubly labeled casein to assess postprandial MPS based on the 1) constant tracer infusion of L-[ ring-2H5]phenylalanine, 2) ingestion of intrinsically L-[1-13C]phenylalanine-labeled casein, and 3) constant infusion of L-[1-13C]leucine in combination with the ingestion of intrinsically L-[1-13C]leucine-labeled casein. Postprandial MPS was increased ( P < 0.05) after protein ingestion (∼70% above postabsorptive values) based on the L-[1-13C]leucine tracer. There was no significant stimulation of postprandial MPS (∼27% above postabsorptive values) when the calculated fractional synthesis rate was based on the L-[ring-2H5]phenylalanine ( P = 0.2). Comparisons of postprandial MPS based on the primed continuous infusion of L-[1-13C]leucine or the ingestion of intrinsically L-[1-13C]phenylalanine-labeled casein protein demonstrated differences compared with the primed continuous infusion of L-[ ring-2H5]phenylalanine ( P > 0.05). Our findings confirm that the postprandial MPS assessed using the primed continuous tracer infusion approach may differ if tracer steady-state conditions in the precursor pools are perturbed. The use of intrinsically doubly labeled protein provides a method to study the metabolic fate of the ingested protein and the subsequent postprandial MPS response.

Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 989 ◽  
Author(s):  
Bendtsen ◽  
Thorning ◽  
Reitelseder ◽  
Ritz ◽  
Hansen ◽  
...  

Abstract: Background: Whey protein has been shown to be one of the best proteins to stimulate muscle protein synthesis rate (MPS), but other high quality proteins, e.g., animal/porcine-derived, could have similar effects. Objective: To investigate the effects of hydrolyzed porcine proteins from blood (HPB) and muscle (HPM), in comparison to hydrolyzed whey protein (HW), on MPS after intake of 15 g alone or 30 g protein as part of a mixed meal. We hypothesized that the postprandial MPS would be similar for porcine proteins and whey protein. Design: Eighteen men (mean ± SD age: 24 ± 1 year; BMI: 21.7 ± 0.4 kg/m2) participated in the randomized, double-blind, three-way cross-over study. Subjects consumed the three test products (HPB, HPM and HW) in a random order in two servings at each test day. Serving 1 consisted of a drink with 15 g protein and serving 2 of a drink with 30 g protein together with a mixed meal. A flood-primed continuous infusion of (ring-13C6) phenylalanine was performed and muscle biopsies, blood and urine samples were collected for determination of MPS, muscle free leucine, plasma amino acid concentrations and urea excretion. Results: There were no statistical differences between the MPS measured after consuming 15 g protein alone or 30 g with a mixed meal (p = 0.53) of HPB (0.048 ± 0.007 vs. 0.049 ± 0.008%/h, resp.), HPM (0.063 ± 0.011 vs. 0.062 ± 0.011 %/h, resp.) and HW (0.058 ± 0.007 vs. 0.071 ± 0.013%/h, resp.). However, the impact of protein type on MPS reached statistical tendency (HPB vs. HPM (p = 0.093) and HPB vs. HW (p = 0.067)) with no difference between HPM and HW (p = 0.88). Plasma leucine, branched-chain, essential and total amino acids were generally higher for HPB and HW than HPM (p < 0.01), which reflected their content in the proteins. Muscle-free leucine was higher for HPB than HW and HPM (p < 0.05). Conclusion: Hydrolyzed porcine proteins from blood and muscle resulted in an MPS similar to that of HW, although with a trend for porcine blood proteins to be inferior to muscle proteins and whey. Consequently, these porcine-derived muscle proteins can be used similarly to whey protein to support maintenance of skeletal muscle as part of supplements and ingredients in foods.


2018 ◽  
Vol 124 (1) ◽  
pp. 66-75 ◽  
Author(s):  
Andrew M. Holwerda ◽  
Kevin J. M. Paulussen ◽  
Maarten Overkamp ◽  
Joey S. J. Smeets ◽  
Annemie P. Gijsen ◽  
...  

Resistance-type exercise increases muscle protein synthesis rates during acute postexercise recovery. The impact of resistance-type exercise training on (local) muscle protein synthesis rates under free-living conditions on a day-to-day basis remains unclear. We determined the impact of daily unilateral resistance-type exercise on local myofibrillar protein synthesis rates during a 3-day period. Twelve healthy young men (22 ± 1 yr) were recruited to participate in this study where they performed daily, unilateral resistance-type exercise during a 3-day intervention period. Two days before the exercise training subjects ingested 400 ml deuterated water (2H2O). Additional 50-ml doses of deuterated water were ingested daily during the training period. Saliva and blood samples were collected daily to assess body water and amino acid precursor deuterium enrichments, respectively. Muscle tissue biopsies were collected before and after the 3 days of unilateral resistance-type exercise training from both the exercised and the nonexercised, control leg for the assessment of muscle protein synthesis rates. Deuterated water dosing resulted in a steady-state body water enrichment of 0.70 ± 0.03%. Intramuscular free [2H]alanine enrichment increased up to 1.84 ± 0.06 mole percent excess (MPE) before the exercise training and did not change in both the exercised and control leg during the 3 subsequent exercise training days (2.11 ± 0.11 and 2.19 ± 0.12 MPE, respectively; P > 0.05). Muscle protein synthesis rates averaged 1.984 ± 0.118 and 1.642 ± 0.089%/day in the exercised vs. nonexercised, control leg when assessed over the entire 3-day period ( P < 0.05). Daily resistance-type exercise stimulates (local) muscle protein synthesis in vivo in humans. NEW & NOTEWORTHY This study demonstrates that daily resistance-type exercise stimulates muscle protein synthesis rates in vivo in humans over multiple days. Whereas acute studies have shown that resistance-type exercise increases muscle protein synthesis rates by 50–100%, we observed a lower impact of resistance-type exercise under free-living conditions. We also compared precursor tracer selection for the calculation of muscle protein synthesis rates and observed that saliva deuterium enrichment serves as an appropriate and practical choice of precursor.


1995 ◽  
Vol 20 (4) ◽  
pp. 480-486 ◽  
Author(s):  
J. Duncan MacDougall ◽  
Martin J. Gibala ◽  
Mark A. Tarnopolsky ◽  
Jay R. MacDonald ◽  
Stephen A. Interisano ◽  
...  

It has been shown that muscle protein synthetic rate (MPS) is elevated in humans by 50% at 4 hrs following a bout of heavy resistance training, and by 109% at 24 hrs following training. This study further examined the time course for elevated muscle protein synthesis by examining its rate at 36 hrs following a training session. Six healthy young men performed 12 sets of 6- to 12-RM elbow flexion exercises with one arm while the opposite arm served as a control. MPS was calculated from the in vivo rate of incorporation of L-[1,2−13C2] leucine into biceps brachii of both arms using the primed constant infusion technique over 11 hrs. At an average time of 36 hrs postexercise, MPS in the exercised arm had returned to within 14% of the control arm value, the difference being nonsignificant. It is concluded that following a bout of heavy resistance training, MPS increases rapidly, is more than double at 24 hrs, and thereafter declines rapidly so that at 36 hrs it has almost returned to baseline. Key words: L-[−13C] leucine, muscle hypertrophy, training frequency, mass spectrometry


2014 ◽  
Vol 306 (11) ◽  
pp. E1330-E1339 ◽  
Author(s):  
Lars Holm ◽  
Søren Reitelseder ◽  
Kasper Dideriksen ◽  
Rie H. Nielsen ◽  
Jacob Bülow ◽  
...  

Muscle protein synthesis (MPS) rate is determined conventionally by obtaining two or more tissue biopsies during a primed, continuous infusion of a stable isotopically labeled amino acid. The purpose of the present study was to test whether tracer priming given as a flooding dose, thereby securing an instantaneous labeling of the tissue pools of free tracee amino acids, followed by a continuous infusion of the same tracer to maintain tracer isotopic steady state, could be used to determine the MPS rate over a prolonged period of time by obtaining only a single tissue biopsy. We showed that the tracer from the flood prime appeared immediately in the muscle free pool of amino acids and that this abundance could be kept constant by a subsequent continuous infusion of the tracer. When using phenylalanine as tracer, the flood-primed, continuous infusion protocol does not stimulate the MPS rate per se. In conclusion, the flood-primed, continuous infusion protocol using phenylalanine as tracer can validly be used to measure the protein synthesis rate in human in vivo experiments by obtaining only a single tissue biopsy after a prolonged infusion period.


1979 ◽  
Vol 47 (5) ◽  
pp. 974-977 ◽  
Author(s):  
F. W. Booth ◽  
M. J. Seider

The atrophy of skeletal muscle accruing from disuse, or limb immobilization, is caused by a decreased rate of protein synthesis and an increased rate of protein degradation. Currently, little information is available regarding the initial time of the decline in the rate of protein synthesis in skeletal muscle. The purpose of the present study was to determine, as precisely as possible, the time at which the protein synthesis rate first begins to decline in skeletal muscle, utilizing immobilized limbs of rats for a model. A constant-infusion technique employing [14C]tyrosine was used to estimate protein synthesis rates. During the first 6 h of immobilization, a significant decline of 37% in the fractional rate of protein synthesis from the control level of 5.7%/day was observed. These results suggest that very early changes are occurring in molecular events that regulate protein synthesis in disused or immobilized skeletal muscle.


2012 ◽  
Vol 113 (6) ◽  
pp. 896-902 ◽  
Author(s):  
Nicholas A. Burd ◽  
Bart Pennings ◽  
Bart B. L. Groen ◽  
Annemie P. Gijsen ◽  
Joan M. G. Senden ◽  
...  

We aimed to assess the reliability of the single biopsy approach for calculating muscle protein synthesis rates compared with the well described sequential muscle biopsy approach following a primed continuous infusion of L-[ ring-2H5]phenylalanine and GC-MS analysis in older men. Two separate experimental infusion protocols, with differing stable isotope amino acid incorporation times, were employed consisting of n = 27 ( experiment 1) or n = 9 ( experiment 2). Specifically, mixed muscle protein FSR were calculated from baseline plasma protein enrichments and muscle protein enrichments obtained at 90 min or 50 min (1BX SHORT), 210 min or 170 min (1BX LONG), and between the muscle protein enrichments obtained at 90 and 210 min or 50 min and 170 min (2BX) of the infusion for experiments 1 and 2, respectively. In experiment 2, we also assessed the error that is introduced to the single muscle biopsy approach when nontracer naive subjects are recruited for participation in a primed continuous infusion of isotope-labeled amino acids. In experiment 1, applying the individual plasma protein enrichment values to the single muscle biopsy approach resulted in no differences in muscle protein FSR between the 1BX SHORT (0.031 ± 0.003%·h−1), 1BX LONG (0.032 ± 0.002%·h−1), or the 2BX approach (0.034 ± 0.002%·h−1). A significant correlation in muscle protein FSR was observed only between the 1BX LONG and 2BX approach ( r = 0.8; P < 0.001). Similar results were observed in experiment 2. In addition, using the single biopsy approach in nontracer naïve state results in a muscle protein FSR that is negative for both the 1BX SHORT (−0.67 ± 0.051%·h−1) and 1BX LONG (−0.19 ± 0.051%·h−1) approaches. This is the first study to demonstrate that the single biopsy approach, coupled with the background enrichment of L-[ ring-2H5]-phenylalanine of mixed plasma proteins, generates data that are similar to using the sequential muscle biopsy approach in the elderly population.


Author(s):  
Joshua L Hudson ◽  
Matthew Cotter ◽  
David N Herndon ◽  
Robert R Wolfe ◽  
Elisabet Børsheim

Abstract Loss of muscle mass in response to injury or immobilization impairs functional capacity and metabolic health, thus hindering rehabilitation. Stable isotope techniques are powerful in determining skeletal muscle protein fluxes. Traditional tracer incorporation methods to measure muscle protein synthesis and breakdown are cumbersome and invasive to perform in vulnerable populations such as children. To circumvent these issues, a two-bolus stable isotope amino acid method has been developed; although, measured rates of protein synthesis and breakdown have not been validated simultaneously against an accepted technique such as the arterial-venous balance method. The purpose of the current analysis was to provide preliminary data from the simultaneous determination of the arteriovenous balance and two-bolus tracer incorporation methods on muscle fractional synthesis and breakdown rates in children with burns. Five were administered a primed-constant infusion of L-[ 15N]Threonine for 180 minutes (Prime: 8 µmol/kg; constant: 0.1 µmol·kg -1·min -1). At 120 and 150 minutes, bolus injections of L-[ring- 13C6]Phenylalanine and L-[ 15N]Phenylalanine (50 µmol/kg each) were administered, respectively. Blood and muscle tissue samples were collected to assess mixed muscle protein synthesis and breakdown rates. The preliminary results from this study indicate there is no difference in either fractional synthesis rate (mean ± SD; arteriovenous balance: 0.19 ± 0.17 %/h; tracer incorporation: 0.14 ± 0.08 %/h; P = 0.42) or fractional breakdown rate (arteriovenous balance: 0.29 ± 0.22 %/h; tracer incorporation: 0.23 ± 0.14 %/h; P = 0.84) between methods. These data support the validity of both methods in quantifying muscle amino acid kinetics; however, the results are limited and adequately powered research is still required.


1992 ◽  
Vol 122 (4) ◽  
pp. 878-887 ◽  
Author(s):  
Farook Jahoor ◽  
Xiao-Jun Zhang ◽  
Hidefumi Baba ◽  
Yoichi Sakurai ◽  
Robert R. Wolfe

2010 ◽  
Vol 298 (2) ◽  
pp. E354-E361 ◽  
Author(s):  
Nicholas A. Burd ◽  
Jared M. Dickinson ◽  
Jennifer K. LeMoine ◽  
Chad C. Carroll ◽  
Bridget E. Sullivan ◽  
...  

Nonselective blockade of the cyclooxygenase (COX) enzymes in skeletal muscle eliminates the normal increase in muscle protein synthesis following resistance exercise. The current study tested the hypothesis that this COX-mediated increase in postexercise muscle protein synthesis is regulated specifically by the COX-2 isoform. Sixteen males (23 ± 1 yr) were randomly assigned to one of two groups that received three doses of either a selective COX-2 inhibitor (celecoxib; 200 mg/dose, 600 mg total) or a placebo in double-blind fashion during the 24 h following a single bout of knee extensor resistance exercise. At rest and 24 h postexercise, skeletal muscle protein fractional synthesis rate (FSR) was measured using a primed constant infusion of [2H5]phenylalanine coupled with muscle biopsies of the vastus lateralis, and measurements were made of mRNA and protein expression of COX-1 and COX-2. Mixed muscle protein FSR in response to exercise ( P < 0.05) was not suppressed by the COX-2 inhibitor (0.056 ± 0.004 to 0.108 ± 0.014%/h) compared with placebo (0.074 ± 0.004 to 0.091 ± 0.005%/h), nor was there any difference ( P > 0.05) between the placebo and COX-2 inhibitor postexercise when controlling for resting FSR. The COX-2 inhibitor did not influence COX-1 mRNA, COX-1 protein, or COX-2 protein levels, whereas it did increase ( P < 0.05) COX-2 mRNA (3.0 ± 0.9-fold) compared with placebo (1.3 ± 0.3-fold). It appears that the elimination of the postexercise muscle protein synthesis response by nonselective COX inhibitors is not solely due to COX-2 isoform blockade. Furthermore, the current data suggest that the COX-1 enzyme is likely the main isoform responsible for the COX-mediated increase in muscle protein synthesis following resistance exercise in humans.


1996 ◽  
Vol 270 (3) ◽  
pp. E430-E437 ◽  
Author(s):  
C. H. Lang ◽  
J. Fan ◽  
R. Cooney ◽  
T. C. Vary

The purpose of the present investigation was to determine whether endogenously produced interleukin (IL)-1 mediates the changes in insulin-like growth factor (IGF) I and IGF binding proteins (IGFBP) induced by chronic abdominal sepsis in rats and to correlate the changes in the IGF system with the alternations in protein synthesis. A constant infusion of IL-1 receptor antagonist (IL-1ra) was begun after the induction of sepsis and was continued for 5 days. Sepsis decreased IGF-I levels in the blood, liver, and gastrocnemius muscle, increased the content in the kidney, and did not alter IGF-I levels in heart, jejunum, and spleen. IL-1ra attenuated the sepsis-induced decrease in plasma IGF-I and completely prevented the changes in IGF-I observed in liver, kidney, and the gastrocnemius. IGFBP-1 was increased in the blood, liver, and muscle of septic rats. IL-1ra prevented this increase in IGFBP-1 in blood and liver but not in muscle. The rate of in vivo protein synthesis was decreased in the gastrocnemius and kidney and unaltered in the heart, liver, jejunum, and spleen. A strong linear correlation existed between levels of IGF-I and the rate of protein synthesis determined simultaneously in the gastrocnemius. These results provide evidence for the role of IL-1 as an endogenous mediator of the sepsis-induced changes in IGF-I and IGFBP-1 and suggest that the accompanying changes in muscle protein synthesis are partially mediated via changes in IGF-I.


Sign in / Sign up

Export Citation Format

Share Document