scholarly journals Bone loss after severe spinal cord injury coincides with reduced bone formation and precedes bone blood flow deficits

Author(s):  
Joshua F. Yarrow ◽  
Russell D. Wnek ◽  
Christine F. Conover ◽  
Michael C. Reynolds ◽  
Kinley H. Buckley ◽  
...  

Diminished bone perfusion develops in response to disuse and has been proposed as a mechanism underlying bone loss. Bone blood flow (BF) has not been investigated within the unique context of severe contusion spinal cord injury (SCI), a condition that produces neurogenic bone loss that is precipitated by disuse and other physiologic consequences of central nervous system injury. Herein, 4-mo-old male Sprague-Dawley rats received T9 laminectomy (SHAM) or laminectomy with severe contusion SCI (N=20/group). Time course assessments of hindlimb bone microstructure and bone perfusion were performed in vivo at 1- and 2-wks post-surgery via microCT and intracardiac microsphere infusion, respectively, and bone turnover indices were determined via histomorphometry. Both groups exhibited cancellous bone loss beginning in the initial post-surgical week, with cancellous and cortical bone deficits progressing only in SCI thereafter. Trabecular bone deterioration coincided with uncoupled bone turnover after SCI, as indicated by signs of ongoing osteoclast-mediated bone resorption and a near-complete absence of osteoblasts and cancellous bone formation. Bone BF was not different between groups at 1-wk, when both groups displayed bone loss. In comparison, femur and tibia perfusion was 30-40% lower in SCI vs SHAM at 2-wks, with the most pronounced regional BF deficits occurring at the distal femur. Significant associations existed between distal femur BF and cancellous and cortical bone loss indices. Our data provide the first direct evidence indicating bone BF deficits develop in response to SCI and temporally coincide with suppressed bone formation and with cancellous and cortical bone deterioration.

2018 ◽  
Vol 114 ◽  
pp. e785-e791 ◽  
Author(s):  
Masoud Hatefi ◽  
Mohammad Reza Hafezi Ahmadi ◽  
Asghar Rahmani ◽  
Masoud Moghadas Dastjerdi ◽  
Khairollah Asadollahi

2016 ◽  
Vol 28 (3) ◽  
pp. 747-765 ◽  
Author(s):  
C. M. Cirnigliaro ◽  
M. J. Myslinski ◽  
M. F. La Fountaine ◽  
S. C. Kirshblum ◽  
G. F. Forrest ◽  
...  

2015 ◽  
Vol 47 ◽  
pp. 624
Author(s):  
Joshua F. Yarrow ◽  
Fan Ye ◽  
Christine F. Conover ◽  
Payal Ghosh ◽  
Alexander Balaez ◽  
...  

2020 ◽  
Vol 14 (1) ◽  
pp. 97-105 ◽  
Author(s):  
Prince Thakkar ◽  
Naveen B. Prakash ◽  
George Tharion ◽  
Sahana Shetty ◽  
Thomas V. Paul ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1321
Author(s):  
Joo-Hyun Kee ◽  
Jun-Hyeong Han ◽  
Chang-Won Moon ◽  
Kang Hee Cho

Patients with a spinal cord injury (SCI) frequently experience sudden falls in blood pressure during postural change. Few studies have investigated whether the measurement of blood flow velocity within vessels can reflect brain perfusion during postural change. By performing carotid duplex ultrasonography (CDU), we investigated changes in cerebral blood flow (CBF) during postural changes in patients with a cervical SCI, determined the correlation of CBF change with presyncopal symptoms, and investigated factors affecting cerebral autoregulation. We reviewed the medical records of 100 patients with a cervical SCI who underwent CDU. The differences between the systolic blood pressure, diastolic blood pressure, and CBF volume in the supine posture and after 5 min at 50° tilt were evaluated. Presyncopal symptoms occurred when the blood flow volume of the internal carotid artery decreased by ≥21% after tilt. In the group that had orthostatic hypotension and severe CBF decrease during tilt, the body mass index and physical and functional scores were lower than in other groups, and the proportion of patients with a severe SCI was high. The higher the SCI severity and the lower the functional score, the higher the possibility of cerebral autoregulation failure. CBF should be assessed by conducting CDU in patients with a high-level SCI.


2002 ◽  
Vol 93 (6) ◽  
pp. 1966-1972 ◽  
Author(s):  
Maria T. E. Hopman ◽  
Jan T. Groothuis ◽  
Marcel Flendrie ◽  
Karin H. L. Gerrits ◽  
Sibrand Houtman

The purpose of the present study was to determine the effect of a spinal cord injury (SCI) on resting vascular resistance in paralyzed legs in humans. To accomplish this goal, we measured blood pressure and resting flow above and below the lesion (by using venous occlusion plethysmography) in 11 patients with SCI and in 10 healthy controls (C). Relative vascular resistance was calculated as mean arterial pressure in millimeters of mercury divided by the arterial blood flow in milliliters per minute per 100 milliliters of tissue. Arterial blood flow in the sympathetically deprived and paralyzed legs of SCI was significantly lower than leg blood flow in C. Because mean arterial pressure showed no differences between both groups, leg vascular resistance in SCI was significantly higher than in C. Within the SCI group, arterial blood flow was significantly higher and vascular resistance significantly lower in the arms than in the legs. To distinguish between the effect of loss of central neural control vs. deconditioning, a group of nine SCI patients was trained for 6 wk and showed a 30% increase in leg blood flow with unchanged blood pressure levels, indicating a marked reduction in vascular resistance. In conclusion, vascular resistance is increased in the paralyzed legs of individuals with SCI and is reversible by training.


Sign in / Sign up

Export Citation Format

Share Document