scholarly journals Effects of two cooling strategies on thermoregulatory responses of tetraplegic athletes during repeated intermittent exercise in the heat

2005 ◽  
Vol 98 (6) ◽  
pp. 2101-2107 ◽  
Author(s):  
N. Webborn ◽  
M. J. Price ◽  
P. C. Castle ◽  
V. L. Goosey-Tolfrey

Athletes with spinal cord injury (SCI), and in particular tetraplegia, have an increased risk of heat strain and consequently heat illness relative to able-bodied individuals. Strategies that reduce the heat strain during exercise in a hot environment may reduce the risk of heat illness. To test the hypotheses that precooling or cooling during intermittent sprint exercise in a heated environment would attenuate the rise in core temperature in tetraplegic athletes, eight male subjects with SCI (lesions C5–C7; 2 incomplete lesions) undertook four heat stress trials (32.0 ± 0.1°C, 50 ± 0.1% relative humidity). After assessment of baseline thermoregulatory responses at rest for 80 min, subjects performed three intermittent sprint protocols for 28 min. All trials were undertaken on an arm crank ergometer and involved a no-cooling control (Con), 20 min of precooling (Pre), or cooling during exercise (Dur). Trials were administered in a randomized order. After the intermittent sprint protocols, mean core temperature was higher during Con (37.3 ± 0.3°C) compared with Pre and Dur (36.5 ± 0.6°C and 37.0 ± 0.5°C, respectively; P < 0.01). Moreover, perceived exertion was lower during Pre (13 ± 2; P < 0.01) and Dur (12 ± 1; P < 0.01) compared with Con (14 ± 2). These results suggest that both precooling and cooling during intermittent sprint exercise in the heat reduces thermal strain in tetraplegic athletes. The cooling strategies also appear to show reduced perceived exertion at equivalent time points, which may translate into improved functional capacity.

Author(s):  
Farah Mneimneh ◽  
Nesreen Ghaddar ◽  
Kamel Ghali ◽  
Charbel Moussalem ◽  
Ibrahim Omeis

Abstract Phase change material (PCM) cooling vests were tested on people with thoracic (T1-T12) spinal cord injury (SCI), also called people with paraplegia (PA), during exercise in heat. The purpose was to reduce heat stress, limit the increase in core temperature, and improve thermal comfort for PA under high metabolic rates and hot ambient conditions. This health risk was a result of thoracic SCI and disruption of thermoregulatory responses in PA. The current study aims to evaluate the efficacy of cooling vest on PA during arm-crank exercise at two melting points, 20°C (V20) and 14°C (V14) compared to no vest test (NV). Eleven participants with high- (T1-T3) and mid-thoracic SCI (T4-T8) were selected to participate in three tests. Core and skin temperatures and heart rate values were measured during 15-min precondition, 30-min exercise and 15-min recovery. Subjective voting of thermal comfort, sensation, skin wettedness and perceived exertion were recorded during exercise only. The main findings revealed significant reduction in change in core temperature (0.42±0.3°C;0.38±0.2°C) in V20 and V14 compared to NV tests for mid-thoracic group. For high-thoracic group, V20 and V14 were least effective in reducing core temperature (p &gt; 0.05). Improvements in thermal comfort was established when using V14 and V20 compared to NV by 85% and 30% for high-thoracic group and by 72% and 53% for mid-thoracic group.


Sports ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 164
Author(s):  
Sharon Stay ◽  
Michelle Cort ◽  
David Ward ◽  
Alex Kountouris ◽  
John Orchard ◽  
...  

This study aimed to observe core temperature responses in elite cricket players under match conditions during the summer in Australia. Thirty-eight Australian male cricketers ingested capsule temperature sensors during six four-day first-class matches between February 2016 and March 2017. Core temperature (Tc) was recorded during breaks in play. Batters showed an increase in Tc related to time spent batting of approximately 1 °C per two hours of play (p < 0.001). Increases in rate of perceived exertion (RPE) in batters correlated with smaller elevations in Tc (0.2 °C per one unit of elevation in RPE) (p < 0.001). Significant, but clinically trivial, increases in Tc of batters were found related to the day of play, wet bulb globe temperature (WBGT), air temperature, and humidity. A trivial increase in Tc (p < 0.001) was associated with time in the field and RPE when fielding. There was no association between Tc and WBGT, air temperature, humidity, or day of play in fielders. This study demonstrates that batters have greater rises in Tc than other cricket participants, and may have an increased risk of exertional heat illness, despite exposure to similar environmental conditions.


Author(s):  
Farah Mneimneh ◽  
Nesreen Ghaddar ◽  
Kamel Ghali ◽  
Charbel Moussalem ◽  
Ibrahim Omeis

Abstract Personal cooling vests to alleviate thermal strain in persons with thoracic spinal cord injury (SCI), named paraplegia, were tested. Mainly, phase change material (PCM) cooling vests were the most frequent type applied at different exercises and ambient conditions. Published results of PCM cooling vests indicated its significant effect in reducing body core temperature for persons having more than 50% of their trunk skin as sensate. Nevertheless, preferences of persons with SCI obtained from subjective voting during experimental studies revealed that the use of PCM cooling vests caused additional burden weight on the body and sometimes restricted the movement. It is of interest to investigate the effect of an alternative personal evaporative cooling vest (ECV), characterized by light weight and practical use without hindering body movement of persons with SCI. In this study, it is aimed to compare the effect of ECV on the physiological and psychological responses of persons with SCI compared to that of PCM cooling vests under the same ambient conditions and metabolic rates. The research methodology included human subject experiments for persons with mid-thoracic (T4-T8) and low-thoracic (T9-T12) injury where the sensate skin of the trunk is at least 50% of its area. Thirteen participants were recruited to perform an arm-crank exercise at a constant load of 30 W for 30-min while using ECV inside a controlled climatic chamber of hot conditions (30°C, 4 0% RH). Measurements of body core and skin temperatures as well as thermal comfort and sensation, perceived exertion and skin wettedness were done. Furthermore, Multi-way ANOVA test was conducted to analyse the results of three tests: no vest (NV), with ECV, and with PCM. Findings of mid- and low-thoracic groups showed similar effectiveness of ECV compared to PCM cooling vest in reducing core temperature, yet the change in perceived exertion was better with the use of ECV due to its light weight.


2020 ◽  
Vol 15 (6) ◽  
pp. 892-895 ◽  
Author(s):  
Christopher John Stevens ◽  
Megan L. Ross ◽  
Julien D. Périard ◽  
Brent S. Vallance ◽  
Louise M. Burke

Purpose: The core temperature responses during exercise and effects of different cooling strategies on endurance performance under heat stress have been investigated in recreational athletes. This investigation aimed to determine peak rectal temperatures during elite racewalking competitions and to detail any cooling strategies used. Methods: Rectal temperature was measured in 14 heat-adapted elite/preelite race walkers (9 females) via a telemetric capsule across 4 outdoor events, including the 2018 Commonwealth Games (race 1: 20 km, 25°C, 74% relative humidity [RH], n = 2) and 3 International Association of Athletics Federations–sanctioned 10-km events (race 2: 19°C, 34% RH, n = 2; race 3: 29°C, 47% RH, n = 14; and race 4: 23°C, 72% RH, n = 11). All athletes completed race 3, and a subsample completed the other events. Their use of cooling strategies and symptoms of heat illness were determined. Results: Peak rectal temperatures >40°C were observed in all events. The highest rectal temperature observed during an event was 41.2°C. These high rectal temperatures were observed without concomitant heat illness, with the exception of cramping in one athlete during race 1. The rectal temperatures tended to reach a steady state in the second half of the 20-km event, but no steady state was observed in the 10-km events. The athletes used cooling strategies in race 1 only, implementing different combinations of cold-water immersion, ice-slurry ingestion, ice-towel application, ice-vest application, and facial water spraying. Conclusions: Elite/preelite race walkers experience rectal temperatures >40°C during competition despite only moderate-warm conditions, and even when precooling and midcooling strategies are applied.


2014 ◽  
Vol 49 (5) ◽  
pp. 632-639 ◽  
Author(s):  
Shawnda A. Morrison ◽  
Stephen Cheung ◽  
James D. Cotter

Context: Cooling the body before exercise (precooling) has been studied as an ergogenic aid for many thermal conditions; however, airflow accompanying exercise is seldom reported. Objective: To determine whether the physiologic and ergogenic benefits of precooling before endurance exercise may be negated with semirealistic airflow in hot conditions. Design: Crossover study. Setting: Climate-controlled chamber in a research laboratory. Patients or Other Participants: Ten fit, healthy cyclists. Intervention(s): After a familiarization trial, participants completed 4 randomized, counterbalanced sessions consisting of no precooling versus precooling and no fan airflow versus airflow (~4.8 m/s) during exercise. Precooling was via chest-deep immersion (~24°C) for 1 hour or until core temperature dropped 0.5°C. Participants then cycled at 95% ventilatory threshold in a hot environment (temperature = 30°C, relative humidity = 50%) until volitional exhaustion, core temperature reached &gt;39.5°C, or heart rate reached &gt;95% of maximum. Main Outcome Measure(s): Thermal strain was assessed via core temperature (esophageal and rectal thermistors) and mean skin temperature (thermistors at 10 sites) and cardiovascular strain via heart rate and ratings of perceived exertion. Results: Endurance time (28 ± 12 minutes without precooling or airflow) increased by 30 ± 23 minutes with airflow (~109%; 95% confidence interval = 12, 45 minutes; P &lt; .001) and by 16 ± 15 minutes with precooling (~61%; 95% confidence interval = 4, 25 minutes; P = .013), but it was not further extended when the strategies were combined (29 ± 21 minutes longer than control). During cycling without precooling or airflow, mean core and skin temperatures were higher than in all other trials. Precooling reduced heart rate by 7–11 beats/min during the first 5 minutes of exercise, but this attenuation ended by 15 minutes. Conclusions: Most laboratory-based precooling studies have (inadvertently) overestimated the extent of the physiologic and ergogenic benefits for typical athlete-endurance situations. Precooling increases work capacity effectively when airflow is restricted but may have little or no benefit when airflow is present.


2017 ◽  
Vol 12 (3) ◽  
pp. 393-401 ◽  
Author(s):  
Shane Malone ◽  
Mark Roe ◽  
Dominic A. Doran ◽  
Tim J. Gabbett ◽  
Kieran D. Collins

Purpose:To examine the association between combined session rating of perceived exertion (RPE) workload measures and injury risk in elite Gaelic footballers.Methods:Thirty-seven elite Gaelic footballers (mean ± SD age 24.2 ± 2.9 y) from 1 elite squad were involved in a single-season study. Weekly workload (session RPE multiplied by duration) and all time-loss injuries (including subsequent-wk injuries) were recorded during the period. Rolling weekly sums and wk-to-wk changes in workload were measured, enabling the calculation of the acute:chronic workload ratio by dividing acute workload (ie, 1-weekly workload) by chronic workload (ie, rolling-average 4-weekly workload). Workload measures were then modeled against data for all injuries sustained using a logistic-regression model. Odds ratios (ORs) were reported against a reference group.Results:High 1-weekly workloads (≥2770 arbitrary units [AU], OR = 1.63–6.75) were associated with significantly higher risk of injury than in a low-training-load reference group (<1250 AU). When exposed to spikes in workload (acute:chronic workload ratio >1.5), players with 1 y experience had a higher risk of injury (OR = 2.22) and players with 2–3 (OR = 0.20) and 4–6 y (OR = 0.24) of experience had a lower risk of injury. Players with poorer aerobic fitness (estimated from a 1-km time trial) had a higher injury risk than those with higher aerobic fitness (OR = 1.50–2.50). An acute:chronic workload ratio of (≥2.0) demonstrated the greatest risk of injury.Conclusions:These findings highlight an increased risk of injury for elite Gaelic football players with high (>2.0) acute:chronic workload ratios and high weekly workloads. A high aerobic capacity and playing experience appears to offer injury protection against rapid changes in workload and high acute:chronic workload ratios. Moderate workloads, coupled with moderate to high changes in the acute:chronic workload ratio, appear to be protective for Gaelic football players.


Sign in / Sign up

Export Citation Format

Share Document