Contraction-mediated phosphorylation of AMPK is lower in skeletal muscle of adenylate kinase-deficient mice

2006 ◽  
Vol 100 (2) ◽  
pp. 406-413 ◽  
Author(s):  
Chad R. Hancock ◽  
Edwin Janssen ◽  
Ronald L. Terjung

The activity of AMP-activated protein kinase (AMPK) increases during muscle contractions as a result of elevated AMP concentration. We tested whether activation of AMPK would be altered during contractions in adenylate kinase (AK) 1-deficient (AK1−/−) mice, because they have a reduced capacity to form AMP. The right gastrocnemius-soleus-plantaris muscle group was stimulated via the sciatic nerve at 2 Hz for 30 min in both wild-type (WT) and AK1−/− animals. Initial force production was not different between the two groups (129.2 ± 3.3 g vs. 140.9 ± 8.5 g for WT and AK1−/−, respectively); however, force production by AK1−/− mice was significantly greater over the 30-min stimulation period, and final tension was 85 ± 4.5% of initial in WT and 102 ± 3.2% of initial in AK1−/− mice. Western blot analysis showed that AMPK phosphorylation with contractions was clearly increased in WT muscles (4.0 ± 1.1 above resting values), but did not change noticeably with AK deficiency (1.6 ± 0.4 above WT resting values). However, increases in phosphorylation of acetyl CoA carboxylase were robust in both WT and AK1−/− muscles and not different between the two groups. These results suggest that reduced formation of AMP during contractions in skeletal muscle of AK1−/− mice results in reduced phosphorylation of AMPK. However, altered AMPK signaling was not apparent in the phosphorylation status of acetyl CoA carboxylase, a typical marker of AMPK activity.

2005 ◽  
Vol 98 (4) ◽  
pp. 1221-1227 ◽  
Author(s):  
D. S. Rubink ◽  
W. W. Winder

AMP-activated protein kinase (AMPK) has previously been demonstrated to phosphorylate and inactivate skeletal muscle acetyl-CoA carboxylase (ACC), the enzyme responsible for synthesis of malonyl-CoA, an inhibitor of carnitine palmitoyltransferase 1 and fatty acid oxidation. Contraction-induced activation of AMPK with subsequent phosphorylation/inactivation of ACC has been postulated to be responsible in part for the increase in fatty acid oxidation that occurs in muscle during exercise. These studies were designed to answer the question: Does phosphorylation of ACC by AMPK make palmitoyl-CoA a more effective inhibitor of ACC? Purified rat muscle ACC was subjected to phosphorylation by AMPK. Activity was determined on nonphosphorylated and phosphorylated ACC preparations at acetyl-CoA concentrations ranging from 2 to 500 μM and at palmitoyl-CoA concentrations ranging from 0 to 100 μM. Phosphorylation resulted in a significant decline in the substrate saturation curve at all palmitoyl-CoA concentrations. The inhibitor constant for palmitoyl-CoA inhibition of ACC was reduced from 1.7 ± 0.25 to 0.85 ± 0.13 μM as a consequence of phosphorylation. At 0.5 mM citrate, ACC activity was reduced to 13% of control values in response to the combination of phosphorylation and 10 μM palmitoyl-CoA. Skeletal muscle ACC is more potently inhibited by palmitoyl-CoA after having been phosphorylated by AMPK. This may contribute to low-muscle malonyl-CoA values and increasing fatty acid oxidation rates during long-term exercise when plasma fatty acid concentrations are elevated.


2003 ◽  
Vol 95 (4) ◽  
pp. 1523-1530 ◽  
Author(s):  
Michael J. Christopher ◽  
Zhi-Ping Chen ◽  
Christian Rantzau ◽  
Bruce E. Kemp ◽  
Frank P. Alford

The effect of diabetes and exercise on skeletal muscle (SkM) AMP-activated protein kinase (AMPK)α1 and -α2 activities and site-specific phosphorylation of acetyl-CoA carboxylase was examined in the same six dogs before alloxan (35 mg/kg)-induced diabetes (C) and after 4-5 wk of suboptimally controlled hyperglycemic and hypoinsulinemic diabetes (DHG) in the presence and absence of 300-min phlorizin (50 μg·kg-1·min-1)-induced “normoglycemia” (DNG). In each study, the dog underwent a 150-min [3-3H]glucose infusion period, followed by a 30-min treadmill exercise test (60-70% maximal oxygen capacity) to measure the rate of glucose disposal into peripheral tissues (Rdtissue). SkM biopsies were taken from the thigh (vastus lateralis) before and immediately after exercise. In the C and DHG states, the rise in plasma free fatty acids (FFA) with exercise (∼40%) was similar. In the DNG group, preexercise FFA were significantly higher, but the absolute rise in FFA with exercise was similar. However, the exercise-induced increment in Rdtissue was significantly blunted (by ∼40-50%) in the DNG group compared with the other states. In SkM, preexercise AMPKα1 and -α2 activities were significantly elevated (by ∼60-125%) in both diabetic states, but unlike the C group these activities did not rise further with exercise. Additionally, preexercise acetyl-CoA carboxylase phosphorylation in both diabetic states was elevated by ∼70-80%, but the increases with exercise were similar to the C group. Preexercise AMPKα1 and -α2 activities were negatively correlated with Rdtissue during exercise for the combined groups (both P < 0.02). In conclusion, the elevated preexercise SkM AMPKα1 and -α2 activities contribute to the ongoing basal supply of glucose and fatty acid metabolism in suboptimally controlled hypoinsulinemic diabetic dogs; but whether they also play a permissive role in the metabolic stress response to exercise remains uncertain.


2003 ◽  
Vol 31 (1) ◽  
pp. 182-185 ◽  
Author(s):  
W.W. Winder ◽  
D.G. Hardie ◽  
K.J. Mustard ◽  
L.J. Greenwood ◽  
B.E. Paxton ◽  
...  

Evidence is accumulating for roles of AMP-activated protein kinase (AMPK) in controlling glucose uptake, fatty acid oxidation and gene expression in skeletal muscle. Relatively little is known, however, about the control of expression of the AMPK subunit isoforms. Marked differences are noted in subunit expression as a function of muscle fibre type. Expression of the γ3 subunit isoform increases in fast-twitch red fibres of the rat in response to training. All subunit isoforms are expressed to a lesser extent in rats treated with propylthiouracil (PTU; an inhibitor of thyroid hormone synthesis) for 3 weeks compared with rats given excess thyroid hormones for 3 weeks. An approx. 2-fold increase in acetyl-CoA carboxylase was observed in gastrocnemius of hyperthyroid rats compared with experimentally hypothyroid rats. Thyroid state therefore appears to be one important factor controlling expression of these proteins in skeletal muscle.


1998 ◽  
Vol 85 (5) ◽  
pp. 1909-1914 ◽  
Author(s):  
G. F. Merrill ◽  
E. J. Kurth ◽  
B. B. Rasmussen ◽  
W. W. Winder

5-Aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR) is taken up by perfused skeletal muscle and phosphorylated to form 5-aminoimidazole-4-carboxamide-1-β-d-ribofuraosyl-5′-monophosphate (analog of 5′-AMP) with consequent activation of AMP-activated protein kinase, phosphorylation of acetyl-CoA carboxylase, decrease in malonyl-CoA, and increase in fatty acid oxidation. This study was designed to determine the effect of increasing levels of palmitate on the rate of fatty acid oxidation. Malonyl-CoA concentration was manipulated with AICAR at different palmitate concentrations. Rat hindlimbs were perfused with Krebs-Henseleit bicarbonate containing 4% bovine serum albumin, washed bovine red cells, 200 μU/ml insulin, 10 mM glucose, and different concentrations of palmitate (0.1–1.0 mM) without or with AICAR (2.0 mM). Perfusion with medium containing AICAR was found to activate AMP-activated protein kinase in skeletal muscle, inactivate acetyl-CoA carboxylase, and decrease malonyl-CoA at all concentrations of palmitate. The rate of palmitate oxidation increased as a function of palmitate concentration in both the presence and absence of AICAR but was always higher in the presence of AICAR. These results provide additional evidence that malonyl-CoA is an important regulator of the rate of fatty acid oxidation at palmitate concentrations in the physiological range.


2007 ◽  
Vol 293 (1) ◽  
pp. H457-H466 ◽  
Author(s):  
Li Zhang ◽  
Huamei He ◽  
James A. Balschi

AMP-activated protein kinase (AMPK) acts as a cellular energy sensor: it responds to an increase in AMP concentration ([AMP]) or the AMP-to-ATP ratio (AMP/ATP). Metformin and phenformin, which are biguanides, have been reported to increase AMPK activity without increasing AMP/ATP. This study tests the hypothesis that these biguanides increase AMPK activity in the heart by increasing cytosolic [AMP]. Groups of isolated rat hearts ( n = 5–7 each) were perfused with Krebs-Henseleit buffer with or without 0.2 mM phenformin or 10 mM metformin, and 31P-NMR-measured phosphocreatine, ATP, and intracellular pH were used to calculate cytosolic [AMP]. At various times, hearts were freeze-clamped and assayed for AMPK activity, phosphorylation of Thr172 on AMPK-α, and phosphorylation of Ser79 on acetyl-CoA carboxylase, an AMPK target. In hearts treated with phenformin for 18 min and then perfused for 20 min with Krebs-Henseleit buffer, [AMP] began to increase at 26 min and AMPK activity was elevated at 36 min. In hearts treated with metformin, [AMP] was increased at 50 min and AMPK activity, phosphorylated AMPK, and phosphorylated acetyl-CoA carboxylase were elevated at 61 min. In metformin-treated hearts, HPLC-measured total AMP content and total AMP/ATP did not increase. In summary, phenformin and metformin increase AMPK activity and phosphorylation in the isolated heart. The increase in AMPK activity was always preceded by and correlated with increased cytosolic [AMP]. Total AMP content and total AMP/ATP did not change. Cytosolic [AMP] reported metabolically active AMP, which triggered increased AMPK activity, but measures of total AMP did not.


1999 ◽  
Vol 86 (2) ◽  
pp. 669-674 ◽  
Author(s):  
C. L. Carlson ◽  
W. W. Winder

Exercise induces a decline in liver malonyl-CoA, an inhibitor of carnitine palmitoyltransferase-1. The purpose of these experiments was to determine whether this decrease in malonyl-CoA is accompanied by an activation of AMP-activated protein kinase (AMPK) and inactivation of acetyl-CoA carboxylase (ACC). Rats were killed at rest, after 10 min of running at 32 m/min up a 15% grade or at 0, 15, or 60 min postexercise after 120 min of running at 16 m/min. There was no significant difference in AMPK and ACC activities after 120 min of exercise, although a trend toward a decrease in ACC and an increase in AMPK was noted 15 min postexercise. After 10 min at 32 m/min, however, maximal ACC activity decreased from 487 ± 27 to 280 ± 39 nmol ⋅ g−1 ⋅ min−1, and the activation constant for citrate activation of ACC increased from 5.9 to 12.5 mM. AMPK activity increased from a resting value of 4.7 ± 0.4 to 9.8 ± 2.0 pmol ⋅ mg−1 ⋅ min−1after exercise. These data provide indirect evidence of phosphorylation and inactivation of liver ACC during heavy exercise. In contrast, the decrease in malonyl-CoA during long-term, low-intensity exercise may occur by mechanisms other than phosphorylation of ACC.


1997 ◽  
Vol 83 (4) ◽  
pp. 1104-1109 ◽  
Author(s):  
B. B. Rasmussen ◽  
W. W. Winder

Rasmussen, B. B., and W. W. Winder. Effect of exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoA carboxylase. J. Appl. Physiol. 83(4): 1104–1109, 1997.—Malonyl-CoA is synthesized by acetyl-CoA carboxylase (ACC) and is an inhibitor of fatty acid oxidation. Exercise induces a decline in skeletal muscle malonyl-CoA, which is accompanied by inactivation of ACC and increased activity of AMP-activated protein kinase (AMPK). This study was designed to determine the effect of exercise intensity on the enzyme kinetics of ACC, malonyl-CoA levels, and AMPK activity in skeletal muscle. Male Sprague-Dawley rats were killed (pentobarbital sodium anesthesia) at rest or after 5 min of exercise (10, 20, 30, or 40 m/min at 5% grade). The fast-twitch red and white regions of the quadriceps muscle were excised and frozen in liquid nitrogen. A progressive decrease in red quadriceps ACC maximal velocity (from 28.6 ± 1.5 to 14.3 ± 0.7 nmol ⋅ g−1 ⋅ min−1, P < 0.05), an increase in activation constant for citrate, and a decrease in malonyl-CoA (from 1.9 ± 0.2 to 0.9 ± 0.1 nmol/g, P < 0.05) were seen with the increase in exercise intensity from rest to 40 m/min. AMPK activity increased more than twofold. White quadriceps ACC activity decreased only during intense exercise. We conclude that the extent of ACC inactivation during short-term exercise is dependent on exercise intensity.


Sign in / Sign up

Export Citation Format

Share Document