scholarly journals Fatigability of the elbow flexor muscles for a sustained submaximal contraction is similar in men and women matched for strength

2004 ◽  
Vol 96 (1) ◽  
pp. 195-202 ◽  
Author(s):  
Sandra K. Hunter ◽  
Ashley Critchlow ◽  
In-Sik Shin ◽  
Roger M. Enoka

The purpose of this study was to compare the time to task failure for a submaximal fatiguing contraction sustained with the elbow flexor muscles by men and women who were matched for strength ( n = 20, 18-35 yr). The maximal torque exerted at the wrist was similar for the men and women [64.5 ± 8.7 (SD) vs. 64.5 ± 8.3 N·m; P > 0.05], which meant that the average torque exerted during the fatiguing contraction [20% of maximum voluntary contraction (MVC)] was similar for the two sexes. The time to task failure was similar for these strength-matched men and women (819 ± 306 vs. 864 ± 391 s; P > 0.05). The mean arterial pressure was similar at the beginning of the contraction for men (97 ± 12 mmHg) and women (96 ± 15 mmHg; P > 0.05) and at task failure (134 ± 18 vs. 126 ± 26 mmHg; P > 0.05, respectively). Furthermore, the increases in heart rate, torque fluctuations, and rating of perceived exertion during the fatiguing contraction were similar for the two sexes. However, the electromyogram (EMG) activity differed for the men and women: the rate of increase in the average of the rectified EMG (% peak MVC) for all the elbow flexor muscles was less for the women compared with the men ( P < 0.05). Furthermore, the bursts of EMG activity for the elbow flexor muscles increased toward exhaustion for all subjects but at a greater rate for the women compared with the men ( P < 0.05). The results indicate that strength-matched men and women experienced similar levels of muscle fatigue and cardiovascular adjustments during a sustained low-force isometric contraction, despite differences in the EMG activity for the two groups of subjects.

2004 ◽  
Vol 96 (6) ◽  
pp. 2125-2132 ◽  
Author(s):  
Sandra K. Hunter ◽  
Ashley Critchlow ◽  
In-Sik Shin ◽  
Roger M. Enoka

The purpose of this study was to compare the time to task failure for a series of intermittent submaximal contractions performed with the elbow flexor muscles by men and women who were matched for strength ( n = 20, 18–34 yr). The fatigue task comprised isometric contractions at 50% of maximal voluntary contraction (MVC) torque (6-s contraction, 4-s rest). The MVC torque was similar for the men and women [64.8 ± 9.2 (SD) vs. 62.2 ± 7.9 N·m; P > 0.05]. However, the time to task failure was longer for the women (1,408 ± 1,133 vs. 513 ± 194 s; P < 0.05), despite the similar torque levels. The mean arterial pressure, heart rate, and rating of perceived exertion started and ended at similar values for the men and women, but the rate of increase was less for the women. The rate of increase in the average of the rectified electromyogram (AEMG; % peak MVC) for the elbow flexor muscles was less for the women: the AEMG was greater for the men compared with the women at task failure (72 ± 28 vs. 50 ± 21%; P < 0.05), despite similar AEMG values at the start of the fatiguing contraction (32 ± 9 vs. 36 ± 13%). These results indicate that for intermittent contractions performed with the elbow flexor muscles 1) the sex difference in time to task failure was not explained by the absolute strength of the men and women, but involved another mechanism that is present during perfused conditions, and 2) men required a more rapid increase in descending drive to maintain a similar torque.


2003 ◽  
Vol 94 (6) ◽  
pp. 2439-2447 ◽  
Author(s):  
Sandra K. Hunter ◽  
Romuald Lepers ◽  
Carol J. MacGillis ◽  
Roger M. Enoka

Twenty-four men ( n = 11) and women ( n = 13) supported an inertial load equivalent to 20% of the maximum voluntary contraction force with the elbow flexor muscles for as long as possible while maintaining a constant elbow angle at 90°. Endurance time did not differ on the three occasions that the task was performed (320 ± 149 s; P > 0.05), and there was no difference between women (360 ± 168 s) and men (273 ± 108 s; P = 0.11). The rate of increase in average electromyogram (EMG) for the elbow flexor muscles was similar across sessions ( P > 0.05). However, average EMG during the fatiguing task increased for the long head of biceps brachii, brachioradialis, and brachialis ( P < 0.05) but not for the short head of biceps brachii. Furthermore, the average EMG for the brachialis was greater at the start and end of the contraction compared with the other elbow flexor muscles. The rate of bursts in EMG activity increased during the fatiguing contraction and was greater in brachialis (1.0 ± 0.2 bursts/min) compared with the other elbow flexor muscles (0.5 ± 0.1 bursts/min). The changes in the standard deviation of acceleration, mean arterial pressure, and heart rate during the fatiguing contractions were similar across sessions. These findings indicate that the EMG activity, which reflects the net excitatory and inhibitory input received by the motoneurons in the spinal cord, was not adaptable over repeat sessions for the maintain-position task. Furthermore, these results contrast those from a previous study (Hunter SK and Enoka RM. J Appl Physiol 94: 108–118, 2003) when the goal of the isometric contraction was to maintain a constant force. These results, from a series of studies on the elbow flexor muscles, indicate that the type of load supported during the fatiguing contraction influences the extent to which endurance time can change with repeat performances of the task.


2011 ◽  
Vol 110 (1) ◽  
pp. 125-136 ◽  
Author(s):  
Thorsten Rudroff ◽  
Jamie N. Justice ◽  
Matthew R. Holmes ◽  
Stephen D. Matthews ◽  
Roger M. Enoka

The primary purpose of this study was to determine the influence of load compliance on time to failure during sustained isometric contractions performed with the elbow flexor muscles at four submaximal target forces. Subjects pulled against a rigid restraint during the force task and maintained a constant elbow angle, while supporting an equivalent inertial load during the position task. Each task was sustained for as long as possible. Twenty-one healthy adults (23 ± 6 yr; 11 men) participated in the study. The maximal voluntary contraction (MVC) force was similar ( P = 0.95) before the subjects performed the force and position tasks at each of the four target forces: 20, 30, 45, and 60% of MVC force. The time to task failure was longer for the force tasks (576 ± 80 and 325 ± 70 s) than for the position tasks (299 ± 77 and 168 ± 35 s) at target forces of 20 and 30% ( P < 0.001), but was similar for the force tasks (178 ± 35 and 86 ± 14 s) and the position tasks (132 ± 29 and 87 ± 14 s) at target forces of 45 and 60% ( P > 0.19). The briefer times to failure for the position task at the lower forces were accompanied by greater rates of increase in elbow flexor muscle activity, mean arterial pressure, heart rate, and rating of perceived exertion. There was no difference in the estimates of external mechanical work at any target force. The dominant mechanisms limiting time to failure of sustained isometric contractions with the elbow flexor muscles appear to change at target forces between 30 and 45% MVC, with load compliance being a significant factor at lower forces only.


2004 ◽  
Vol 97 (5) ◽  
pp. 1723-1732 ◽  
Author(s):  
Sandra K. Hunter ◽  
Ashley Critchlow ◽  
Roger M. Enoka

The purpose of this study was to compare time to task failure for a sustained isometric contraction performed at a submaximal intensity with elbow flexor muscles by young and old men and women. Twenty-seven young (14 men and 13 women, 18–35 yr) and 18 old (10 men and 8 women, 65–80 yr) adults sustained an isometric contraction at 20% of maximal voluntary contraction torque until target torque could no longer be achieved for ≥5 s. Young adults were stronger than old adults (66.8 ± 17.9 vs. 47.7 ± 18.1 N·m, P < 0.05), and men were stronger than women (69.8 ± 17.9 vs. 47.1 ± 15.3 N·m, P < 0.05), with no interaction between age and sex ( P > 0.05). Time to task failure was longer for old than for young adults (22.8 ± 9.1 vs. 14.4 ± 7.6 min, P < 0.05) and for young women than for young men (18.3 ± 8.0 vs. 10.8 ± 5.2, P < 0.05), but there was no difference between old women and men (21.3 ± 10.7 and 24.1 ± 8.0 min, respectively, P > 0.05) or between young women and old adults ( P > 0.05). Mean arterial pressure, heart rate, average electromyographic (EMG) activity, and torque fluctuations of elbow flexor muscles increased during the fatiguing contraction ( P < 0.05) for all subjects. Rates of increase in mean arterial pressure, heart rate, and torque fluctuations were greater for young men and old adults, with no differences between old men and women ( P > 0.05). Similarly, the rate of increase in EMG activity was greater for young men than for the other three groups. EMG bursts were less frequent for old adults ( P < 0.05) at the end of the fatiguing contraction, and this was accompanied by reduced fluctuations in torque. Consequently, time to task failure was related to target torque for young, but not old, adults, and differences in task duration were accompanied by parallel changes in the pressor response.


2002 ◽  
Vol 88 (6) ◽  
pp. 3087-3096 ◽  
Author(s):  
Sandra K. Hunter ◽  
Daphne L. Ryan ◽  
Justus D. Ortega ◽  
Roger M. Enoka

Endurance time, muscle activation, and mean arterial pressure were measured during two types of submaximal fatiguing contractions that required each subject to exert the same net muscle torque in the two tasks. Sixteen men and women performed isometric contractions at 15% of the maximum voluntary contraction (MVC) force with the elbow flexor muscles, either by maintaining a constant force while pushing against a force transducer (force task) or by supporting an equivalent inertial load while maintaining a constant elbow angle (position task). The endurance time for the force task (1402 ± 728 s) was twice as long as that for the position task (702 ± 582 s, P < 0.05), despite a similar reduction in the load torque at exhaustion for each contraction. The rate of increase in average electromyographic activity (EMG, % peak MVC value) for the elbow flexor muscles was similar for the two tasks. However, the average EMG was greater at exhaustion for the force task (22.4 ± 1.2%) compared with the position task (14.9 ± 1.0%, P < 0.05). In contrast, the rates of increase in the mean arterial pressure, the rating of perceived exertion, anterior deltoid EMG, and fluctuations in motor output (force or acceleration) were greater for the position task compared with the force task ( P < 0.05). Furthermore, the rate of bursts in EMG activity, which corresponded to the transient recruitment of motor units, was greater for the brachialis muscle during the position task. These results indicate that the briefer endurance time for the position task was associated with greater levels of excitatory and inhibitory input to the motor neurons compared with the force task.


2003 ◽  
Vol 95 (4) ◽  
pp. 1515-1522 ◽  
Author(s):  
L Rochette ◽  
S. K. Hunter ◽  
N Place ◽  
R Lepers

Ten young men sustained an isometric contraction of the knee extensor muscles at 20% of the maximum voluntary contraction (MVC) torque on three separate occasions in a seated posture. Subjects performed an isometric knee extension contraction on a fourth occasion in a supine posture. The time to task failure for the seated posture was similar across sessions (291 ± 84 s; P > 0.05), and the MVC torque was similarly reduced across sessions after the fatiguing contraction (42 ± 12%). The rate of increase in electromyograph (EMG) activity (%MVC) and torque fluctuations during the fatiguing contractions were similar across sessions. However, the rate of increase in EMG differed among the knee extensor muscles: the rectus femoris began at a greater amplitude (31.5 ± 11.0%) compared with the vastus lateralis and vastus medialis muscles (18.8 ± 5.3%), but it ended at a similar value (45.4 ± 3.1%). The time to task failure and increase in EMG activity were similar for the seated and supine tasks; however, the reduction in MVC torque was greater for the seated posture. These findings indicate that the time to task failure for the knee extensor muscles that have a common tendon insertion did not alter over repeat sessions as had been observed for the elbow flexor muscles (Hunter SK and Enoka RM. J Appl Physiol 94: 108-118, 2003).


2005 ◽  
Vol 99 (3) ◽  
pp. 890-897 ◽  
Author(s):  
Sandra K. Hunter ◽  
Ashley Critchlow ◽  
Roger M. Enoka

The purpose was to compare the time to task failure for a sustained isometric contraction performed at a submaximal intensity with the elbow flexor muscles by young and old men who were matched for strength. Eight young men (18–31 yr) and eight old men (67–76 yr) sustained an isometric contraction at 20% of maximal voluntary contraction (MVC) torque until the target torque could no longer be achieved for at least 5 s. The maximal torque exerted at the wrist was similar for the young and old men before the fatiguing task (65.9 ± 8.0 vs. 65.4 ± 8.7 N·m; P > 0.05), and they experienced similar reductions in MVC torque after the fatiguing contraction (31.4 ± 10.6%; P < 0.05). The time to task failure was longer for the old men (22.6 ± 7.4 min) compared with the strength-matched young men (13.0 ± 5.2 min; P < 0.05), despite each group sustaining a similar torque during the fatiguing contraction ( P > 0.05). The increases in torque fluctuations, electromyographic (EMG) bursting activity, and heart rate were greater for young men compared with the old men, and they were less at task failure for the old men ( P < 0.05). Mean arterial pressure increased at a similar rate for both groups of men ( P > 0.05), whereas the averaged EMG activity and rating of perceived exertion reached similar values at task failure for the young and old men ( P > 0.05). These findings indicate that the longer time to task failure for the old men when performing the submaximal contraction was not due the absolute target torque exerted during the contraction.


2003 ◽  
Vol 35 (Supplement 1) ◽  
pp. S295 ◽  
Author(s):  
S K. Hunter ◽  
A Critchlow ◽  
I S. Shin ◽  
R M. Enoka

2018 ◽  
Vol 105 (2) ◽  
pp. 177-187
Author(s):  
R Matsuura ◽  
K Hirakoba ◽  
K Takahashi

The purpose of this study was to examine the effects of submaximal cycling at different exercise intensities on maximal isometric force output of the non-exercised elbow flexor muscles after the cycling. A total of 8 healthy young men performed multiple maximal voluntary contractions by the right elbow flexion before, immediately after, 5 min after, and 10 min after a 6-min submaximal cycling at ventilatory threshold (LI), 70% (MI), and 80% (HI) with both arms relaxed in the air. Force and surface electromyogram (EMG) of the right biceps brachii muscle during the multiple MVCs, blood lactate concentration ([La]), cardiorespiratory responses, and sensations of fatigue for legs (SEF-L) were measured before, immediately after, 5 min after, and 10 min after the submaximal cycling with the three different exercise intensities. Immediately after the submaximal cycling, [La], cardiorespiratory responses, and SEF-L were enhanced in proportion to an increase in exercise intensity of the cycling. Changes in force and EMG activity during the multiple MVCs were not significantly different across the three conditions. The findings imply that group III/IV muscle afferent feedback after the submaximal cycling does not determine the magnitude of MVC force loss of the non-exercised upper limb muscles.


2008 ◽  
Vol 105 (4) ◽  
pp. 1146-1155 ◽  
Author(s):  
James M. Dundon ◽  
John Cirillo ◽  
John G. Semmler

The purpose of this study was to quantify the association between low-frequency fatigue (LFF) and the increase in EMG and force fluctuations after eccentric exercise of elbow flexor muscles. Ten subjects performed two tasks involving voluntary isometric contractions of elbow flexors: a maximum voluntary contraction (MVC) and a constant-force task at five submaximal target forces (5, 10, 20, 40, 60% MVC) while EMG was recorded from biceps and triceps brachii. A third task involved electrical stimulation of biceps brachii at 12 frequencies (1–100 Hz). These tasks were performed before, after, and 2 h and 24 h after concentric or eccentric exercise. MVC force declined after eccentric exercise (34% decline) and remained depressed 24 h later (22% decline), whereas the reduced force following concentric exercise (32%) was recovered 2 h later. Biceps brachii EMG and force fluctuations during the submaximal voluntary contractions increased after eccentric exercise (both ∼2× greater) with the greatest effect at low forces. LFF was equivalent immediately after both types of exercise (50–60% reduction in 20:100 Hz force) with a slower recovery following eccentric exercise. A significant association was found between the change in LFF and EMG ( r2values up to 0.52), with the strongest correlations observed at low forces (20% MVC) and at 2 h after exercise. In contrast, there were no significant associations between LFF and force fluctuations during voluntary or electrically evoked contractions, suggesting that other physiological factors located within the muscle are likely to be playing a major role in the impaired motor performance after eccentric exercise.


Sign in / Sign up

Export Citation Format

Share Document