Activation varies among the knee extensor muscles during a submaximal fatiguing contraction in the seated and supine postures

2003 ◽  
Vol 95 (4) ◽  
pp. 1515-1522 ◽  
Author(s):  
L Rochette ◽  
S. K. Hunter ◽  
N Place ◽  
R Lepers

Ten young men sustained an isometric contraction of the knee extensor muscles at 20% of the maximum voluntary contraction (MVC) torque on three separate occasions in a seated posture. Subjects performed an isometric knee extension contraction on a fourth occasion in a supine posture. The time to task failure for the seated posture was similar across sessions (291 ± 84 s; P > 0.05), and the MVC torque was similarly reduced across sessions after the fatiguing contraction (42 ± 12%). The rate of increase in electromyograph (EMG) activity (%MVC) and torque fluctuations during the fatiguing contractions were similar across sessions. However, the rate of increase in EMG differed among the knee extensor muscles: the rectus femoris began at a greater amplitude (31.5 ± 11.0%) compared with the vastus lateralis and vastus medialis muscles (18.8 ± 5.3%), but it ended at a similar value (45.4 ± 3.1%). The time to task failure and increase in EMG activity were similar for the seated and supine tasks; however, the reduction in MVC torque was greater for the seated posture. These findings indicate that the time to task failure for the knee extensor muscles that have a common tendon insertion did not alter over repeat sessions as had been observed for the elbow flexor muscles (Hunter SK and Enoka RM. J Appl Physiol 94: 108-118, 2003).

1998 ◽  
Vol 275 (2) ◽  
pp. H443-H447 ◽  
Author(s):  
Chester A. Ray ◽  
Edward T. Mahoney ◽  
Keith M. Hume

The purpose of the present investigation was to examine the effect of exercise-induced muscle injury on hemodynamic responses during exercise. Ten subjects performed unilateral isometric knee extensions (IKE) at 30% of preinjury maximum voluntary contraction to fatigue and for 3 min before and 48 h after muscle injury. Muscle injury was elicited by performing 8 sets of 10 repetitions of eccentric muscle actions of the knee extensor muscles (i.e., quadriceps muscles) by lowering a weight equivalent to 75% of eccentric maximum load. Exercise time to fatigue for IKE at 30% of maximum voluntary contraction in the injured leg was significantly decreased from preinjury to postinjury IKE (257 ± 21 to 203 ± 23 s; n = 10), but was unchanged in the control leg (244 ± 16 to 254 ± 20 s; n = 7). With the use of a 10-cm visual analog scale, ratings of muscle soreness in the injured leg increased from 0 to 5.1 ± 0.7 cm ( P < 0.001) but were not changed in the control leg (0 both times). Both heart rate and mean arterial pressure responses to exercise were unchanged following muscle injury. Forearm blood flow and forearm vascular resistance were not different at rest and during the first minute of exercise before and after muscle injury. However, after muscle injury, forearm blood flow was significantly lower and forearm vascular resistance was significantly higher ( P < 0.03) during the second and third minutes of exercise. There were no significant changes in any variables with the contralateral control leg. In four subjects, resting magnetic resonance images demonstrated a 23% greater relative cross-sectional area of the knee extensor muscles with an elevated transverse relaxation time in the injured versus control leg. The results indicate that forearm vascular resistance is augmented during isometric knee extension following muscle injury of the knee extensor muscles. The data suggest that muscle injury alters vascular control to non-exercising skeletal muscle during exercise.


2002 ◽  
Vol 92 (3) ◽  
pp. 1004-1012 ◽  
Author(s):  
Brian L. Tracy ◽  
Roger M. Enoka

This study compared the steadiness of submaximal contractions with the knee extensor muscles in young and old adults. Twenty young and twenty old subjects underwent assessment of isometric maximum voluntary contraction (MVC), one-repetition maximum (1-RM) strength, and steadiness during isometric, concentric, and eccentric contractions with the knee extensor muscles. The old adults displayed 33% lower MVC force and a 41% lower 1-RM load. The coefficient of variation for force was significantly greater for the old adults during isometric contractions at 2, 5, and 10% of MVC but not at 50% MVC. The decline in steadiness at low forces experienced by the men was marginally greater than that experienced by the women. The steadiness of concentric and eccentric contractions was similar in young and old adults at 5, 10, and 50% of 1-RM load. Old subjects exhibited greater coactivation of an antagonist muscle compared with young subjects during the submaximal isometric and anisometric contractions. These results indicate that, whereas the ability to exert steady submaximal forces with the knee extensor muscles was reduced in old adults, fluctuations in knee joint angle during slow movements were similar for young and old adults.


2005 ◽  
Vol 99 (2) ◽  
pp. 579-586 ◽  
Author(s):  
C. J. de Ruiter ◽  
M. D. de Boer ◽  
M. Spanjaard ◽  
A. de Haan

Fatigue resistance of knee extensor muscles is higher during voluntary isometric contractions at short compared with longer muscle lengths. In the present study we hypothesized that this would be due to lower energy consumption at short muscle lengths. Ten healthy male subjects performed isometric contractions with the knee extensor muscles at a 30, 60, and 90° knee angle (full extension = 0°). At each angle, muscle oxygen consumption (mV̇o2) of the rectus femoris, vastus lateralis, and vastus medialis muscle was obtained with near-infrared spectroscopy. mV̇o2 was measured during maximal isometric contractions and during contractions at 10, 30, and 50% of maximal torque capacity. During all contractions, blood flow to the muscle was occluded with a pressure cuff (450 mmHg). mV̇o2 significantly ( P < 0.05) increased with torque and at all torque levels, and for each of the three muscles mV̇o2 was significantly lower at 30° compared with 60° and 90° and mV̇o2 was similar ( P > 0.05) at 60° and 90°. Across all torque levels, average (± SD) mV̇o2 at the 30° angle for vastus medialis, rectus femoris, and vastus lateralis, respectively, was 70.0 ± 10.4, 72.2 ± 12.7, and 75.9 ± 8.0% of the average mV̇o2 obtained for each torque at 60 and 90°. In conclusion, oxygen consumption of the knee extensors was significantly lower during isometric contractions at the 30° than at the 60° and 90° knee angle, which probably contributes to the previously reported longer duration of sustained isometric contractions at relatively short muscle lengths.


2011 ◽  
Vol 46 (4) ◽  
pp. 386-394 ◽  
Author(s):  
Nidhal Zarrouk ◽  
Haithem Rebai ◽  
Abdelmoneem Yahia ◽  
Nizar Souissi ◽  
François Hug ◽  
...  

Context: With regard to intermittent training exercise, the effects of the mode of recovery on subsequent performance are equivocal. Objective: To compare the effects of 3 types of recovery intervention on peak torque (PT) and electromyographic (EMG) activity of the knee extensor muscles after fatiguing isokinetic intermittent concentric exercise. Design: Crossover study. Setting: Research laboratory. Patients or Other Participants: Eight elite judo players (age = 18.4 ± 1.4 years, height = 180 ± 3 cm, mass = 77.0 ± 4.2 kg). Intervention(s): Participants completed 3 randomized sessions within 7 days. Each session consisted of 5 sets of 10 concentric knee extensions at 80% PT at 120°/s, with 3 minutes of recovery between sets. Recovery interventions were passive, active, and electromyostimulation. The PT and maximal EMG activity were recorded simultaneously while participants performed isokinetic dynamometer trials before and 3 minutes after the resistance exercise. Main Outcome Measure(s): The PT and maximal EMG activity from the knee extensors were quantified at isokinetic velocities of 60°/s, 120°/s, and 180°/s, with 5 repetitions at each velocity. Results: The reduction in PT observed after electromyo-stimulation was less than that seen after passive (P &lt; .001) or active recovery (P &lt; .001). The reduction in PT was less after passive recovery than after active recovery (P &lt; .001). The maximal EMG activity level observed after electromyostimulation was higher than that seen after active recovery (P &lt; .05). Conclusions: Electromyostimulation was an effective recovery tool in decreasing neuromuscular fatigue after high-intensity, intermittent isokinetic concentric exercise for the knee extensor muscles. Also, active recovery induced the greatest amount of neuromuscular fatigue.


2013 ◽  
Vol 29 (5) ◽  
pp. 535-542 ◽  
Author(s):  
Bruno Manfredini Baroni ◽  
Jeam Marcel Geremia ◽  
Rodrigo Rodrigues ◽  
Marcelo Krás Borges ◽  
Azim Jinha ◽  
...  

It is not known if a physically active lifestyle, without systematic training, is sufficient to combat age-related muscle and strength loss. Therefore, the purpose of this study was to evaluate if the maintenance of a physically active lifestyle prevents muscle impairments due to aging. To address this issue, we evaluated 33 healthy men with similar physical activity levels (IPAQ = 2) across a large range of ages. Functional (torque-angle and torque-velocity relations) and morphological (vastus lateralis muscle architecture) properties of the knee extensor muscles were assessed and compared between three age groups: young adults (30 ± 6 y), middle-aged subjects (50 ± 7 y) and elderly subjects (69 ± 5 y). Isometric peak torques were significantly lower (30% to 36%) in elderly group subjects compared with the young adults. Concentric peak torques were significantly lower in the middle aged (18% to 32%) and elderly group (40% to 53%) compared with the young adults. Vastus lateralis thickness and fascicles lengths were significantly smaller in the elderly group subjects (15.8 ± 3.9 mm; 99.1 ± 25.8 mm) compared with the young adults (19.8 ± 3.6 mm; 152.1 ± 42.0 mm). These findings suggest that a physically active lifestyle, without systematic training, is not sufficient to avoid loss of strength and muscle mass with aging.


2015 ◽  
Vol 40 (9) ◽  
pp. 924-930 ◽  
Author(s):  
Saied Jalal Aboodarda ◽  
David B. Copithorne ◽  
Kevin E. Power ◽  
Eric Drinkwater ◽  
David G. Behm

The present study investigated the effects of exercise-induced elbow flexor fatigue on voluntary force output, electromyographic (EMG) activity and motoneurone excitability of the nonexercised knee extensor muscles. Eleven participants attended 3 testing sessions: (i) control, (ii) unilateral fatiguing elbow flexion and (iii) bilateral fatiguing elbow flexion (BiFlex). The nonfatigued knee extensor muscles were assessed with thoracic motor evoked potentials (TMEPs), maximal compound muscle action potential (Mmax), knee extensor maximal voluntary contractions (MVCs), and normalized EMG activity before and at 30 s, 3 min, and 5 min postexercise. BiFlex showed significantly lower (Δ = −18%, p = 0.03) vastus lateralis (VL) normalized EMG activity compared with the control session whereas knee extension MVC force did not show any statistical difference between the 3 conditions (p = 0.12). The TMEP·Mmax−1 ratio measured at the VL showed a significantly higher value (Δ = +46%, p = 0.003) following BiFlex compared with the control condition at 30 s postexercise. The results suggest that the lower VL normalized EMG following BiFlex might have been due to a reduction in supraspinal motor output because spinal motoneuronal responses demonstrated substantially higher value (30 s postexercise) and peripheral excitability (compound muscle action potential) showed no change following BiFelex than control condition.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256656
Author(s):  
Giuseppe Coratella ◽  
Stefano Longo ◽  
Susanna Rampichini ◽  
Christian Doria ◽  
Marta Borrelli ◽  
...  

The current study aimed to verify whether or not passive static stretching affects balance control capacity. Thirty-eight participants (19 women and 19 men) underwent a passive static stretching session, involving the knee extensor/flexor and dorsi/plantarflexor muscles, and a control session (no stretching, CTRL). Before (PRE), immediately after (POST), after 15 (POST15) and 30 min (POST30) from stretching (or rest in CTRL), balance control was evaluated under static and dynamic conditions, with open/closed eyes, and with/without somatosensory perturbation (foam under the feet). During tests, centre of pressure (CoP) sway area and perimeter and antero-posterior and medio-lateral sway mean speed were computed. Surface electromyography root mean square (sEMG RMS) was calculated from the vastus lateralis, biceps femoris, gastrocnemius medialis, and tibialis anterior muscles during MVC and during the balance tests. Hip flexion/extension and dorsi/plantarflexion range of motion (ROM), maximum voluntary contraction (MVC) and sEMG RMS during MVC were measured at the same time points. After stretching, ROM increased (≈6.5%; P<0.05), while MVC and sEMG RMS decreased (≈9% and ≈7.5%, respectively; P<0.05). Regardless of the testing condition, CoP sway area and the perimeter remained similar, while antero-posterior and medio-lateral sway mean speed decreased by ≈8% and ≈12%, respectively (P<0.05). sEMG RMS during the balance tests increased in all muscles in POST (≈7%, P<0.05). All variables recovered in POST30. No changes occurred in CTRL. Passive static stretching did not affect the overall balance control ability. However, greater muscle activation was required to maintain similar CoP sway, thus suggesting a decrease in muscle efficiency.


2008 ◽  
Vol 88 (10) ◽  
pp. 1124-1134 ◽  
Author(s):  
Samuel R Pierce ◽  
Mary F Barbe ◽  
Ann E Barr ◽  
Patricia A Shewokis ◽  
Richard T Lauer

Background and Purpose Spasticity is a common impairment in children with cerebral palsy (CP). The purpose of this study was to examine differences in passive resistive torque, reflex activity, coactivation, and reciprocal facilitation during assessments of the spasticity of knee flexor and knee extensor muscles in children with CP and different levels of functional ability. Subjects Study participants were 20 children with CP and 10 children with typical development (TD). The 20 children with CP were equally divided into 2 groups: 10 children classified in Gross Motor Function Classification Scale (GMFCS) level I and 10 children classified in GMFCS level III. Methods One set of 10 passive movements between 25 and 90 degrees of knee flexion and one set of 10 passive movements between 90 and 25 degrees of knee flexion were completed with an isokinetic dynamometer at 15°/s, 90°/s, and 180°/s and concurrent surface electromyography of the vastus lateralis and medial hamstring muscles. Results Children in the GMFCS level III group demonstrated significantly more peak knee flexor torque with passive movements at 180°/s than children with TD. Children in the GMFCS level I and level III groups demonstrated significantly more repetitions with medial hamstring muscle activity, vastus lateralis muscle activity, and co-contraction than children with TD during the assessment of knee flexor spasticity at a velocity of 180°/s. Discussion and Conclusion Children with CP and more impaired functional mobility may demonstrate more knee flexor spasticity and reflex activity, as measured by isokinetic dynamometry, than children with TD. However, the finding of increased reflex activity with no increase in torque in the GMFCS I group in a comparison with the TD group suggests that reflex activity may play a less prominent role in spasticity.


2004 ◽  
Vol 96 (1) ◽  
pp. 195-202 ◽  
Author(s):  
Sandra K. Hunter ◽  
Ashley Critchlow ◽  
In-Sik Shin ◽  
Roger M. Enoka

The purpose of this study was to compare the time to task failure for a submaximal fatiguing contraction sustained with the elbow flexor muscles by men and women who were matched for strength ( n = 20, 18-35 yr). The maximal torque exerted at the wrist was similar for the men and women [64.5 ± 8.7 (SD) vs. 64.5 ± 8.3 N·m; P > 0.05], which meant that the average torque exerted during the fatiguing contraction [20% of maximum voluntary contraction (MVC)] was similar for the two sexes. The time to task failure was similar for these strength-matched men and women (819 ± 306 vs. 864 ± 391 s; P > 0.05). The mean arterial pressure was similar at the beginning of the contraction for men (97 ± 12 mmHg) and women (96 ± 15 mmHg; P > 0.05) and at task failure (134 ± 18 vs. 126 ± 26 mmHg; P > 0.05, respectively). Furthermore, the increases in heart rate, torque fluctuations, and rating of perceived exertion during the fatiguing contraction were similar for the two sexes. However, the electromyogram (EMG) activity differed for the men and women: the rate of increase in the average of the rectified EMG (% peak MVC) for all the elbow flexor muscles was less for the women compared with the men ( P < 0.05). Furthermore, the bursts of EMG activity for the elbow flexor muscles increased toward exhaustion for all subjects but at a greater rate for the women compared with the men ( P < 0.05). The results indicate that strength-matched men and women experienced similar levels of muscle fatigue and cardiovascular adjustments during a sustained low-force isometric contraction, despite differences in the EMG activity for the two groups of subjects.


Sign in / Sign up

Export Citation Format

Share Document