Ischemic preconditioning does not protect via blockade of electron transport

2007 ◽  
Vol 103 (2) ◽  
pp. 623-628 ◽  
Author(s):  
Christine Tanaka-Esposito ◽  
Qun Chen ◽  
Shadi Moghaddas ◽  
Edward J. Lesnefsky

Ischemic preconditioning (IPC) before sustained ischemia decreases myocardial infarct size mediated in part via protection of cardiac mitochondria. Reversible blockade of electron transport at complex I immediately before sustained ischemia also preserves mitochondrial respiration and decreases infarct size. We proposed that IPC would attenuate electron transport from complex I as a potential effector mechanism of cardioprotection. Isolated, Langendorff-perfused rat hearts underwent IPC (3 cycles of 5-min 37°C global ischemia and 5-min reperfusion) or were perfused for 40 min without ischemia as controls. Subsarcolemmal (SSM) and interfibrillar (IFM) populations of mitochondria were isolated. IPC did not decrease ADP-stimulated respiration measured in intact mitochondria using substrates that donate reducing equivalents to complex I. Maximally expressed complex I activity measured as rotenone-sensitive NADH:ubiquinone oxidoreductase in detergent-solubilized mitochondria was also unaffected by IPC. Thus the protection of IPC does not occur as a consequence of a partial decrease in complex I activity leading to a decrease in integrated respiration through complex I. IPC and blockade of electron transport both converge on mitochondria as effectors of cardioprotection; however, each modulates mitochondrial metabolism during ischemia by different mechanisms to achieve cardioprotection.

Author(s):  
Alexander B Veitinger ◽  
Audrey Komguem ◽  
Lena Assling-Simon ◽  
Martina Heep ◽  
Julia Schipke ◽  
...  

Abstract OBJECTIVES Esmolol-based cardioplegic arrest offers better cardioprotection than crystalloid cardioplegia but has been compared experimentally with blood cardioplegia only once. We investigated the influence of esmolol crystalloid cardioplegia (ECCP), esmolol blood cardioplegia (EBCP) and Calafiore blood cardioplegia (Cala) on cardiac function, metabolism and infarct size in non-infarcted and infarcted isolated rat hearts. METHODS Two studies were performed: (i) the hearts were subjected to a 90-min cardioplegic arrest with ECCP, EBCP or Cala and (ii) a regional myocardial infarction was created 30 min before a 90-min cardioplegic arrest. Left ventricular peak developed pressure (LVpdP), velocity of contractility (dLVP/dtmax), velocity of relaxation over time (dLVP/dtmin), heart rate and coronary flow were recorded. In addition, the metabolic parameters were analysed. The infarct size was determined by planimetry, and the myocardial damage was determined by electron microscopy. RESULTS In non-infarcted hearts, cardiac function was better preserved with ECCP than with EBCP or Cala relative to baseline values (LVpdP: 100 ± 28% vs 86 ± 11% vs 57 ± 7%; P = 0.002). Infarcted hearts showed similar haemodynamic recovery for ECCP, EBCP and Cala (LVpdP: 85 ± 46% vs 89 ± 55% vs 56 ± 26%; P = 0.30). The lactate production with EBCP was lower than with ECCP (0.6 ± 0.7 vs 1.4 ± 0.5 μmol/min; P = 0.017). The myocardial infarct size and (ECCP vs EBCP vs Cala: 16 ± 7% vs 15 ± 9% vs 24 ± 13%; P = 0.21) the ultrastructural preservation was similar in all groups. CONCLUSIONS In non-infarcted rat hearts, esmolol-based cardioplegia, particularly ECCP, offers better myocardial protection than Calafiore. After an acute myocardial infarction, cardioprotection with esmolol-based cardioplegia is similar to that with Calafiore.


2011 ◽  
Vol 301 (5) ◽  
pp. H2130-H2139 ◽  
Author(s):  
Nikolina Vladic ◽  
Zhi-Dong Ge ◽  
Thorsten Leucker ◽  
Anna K. Brzezinska ◽  
Jian-Hai Du ◽  
...  

Cardioprotection by ischemic preconditioning (IPC) is impaired during hyperglycemia, but the mechanisms underlying this phenomenon are poorly understood. This study investigated the role of hyperglycemia to adversely modulate tetrahydrobiopterin (BH4) and heat shock protein 90 (Hsp90) during cardioprotection by IPC. Rabbits or mice underwent 30 min of coronary occlusion followed by reperfusion with or without IPC in the presence or absence of hyperglycemia. IPC significantly ( P < 0.05) decreased myocardial infarct size (46 ± 1 to 19 ± 2% of the area at risk in control and IPC rabbits, respectively) and increased BH4 concentrations (HPLC; 7.6 ± 0.2 to 10.2 ± 0.3 pmol/mg protein, respectively), Hsp90-endothelial nitric oxide synthase (eNOS) association (coimmunoprecipitation and Western blotting in mice; 4.0 ± 0.3 to 5.4 ± 0.1, respectively), and the ratio of phosphorylated eNOS/total eNOS. These beneficial actions of IPC on infarct size, BH4, Hsp90/eNOS, and phosphorylated eNOS were eliminated by hyperglycemia. Pretreatment of animals with the Hsp90 inhibitor geldanamycin (0.6 mg/kg) or the BH4 synthesis inhibitor diamino-6-hydroxypyrimidine (1.0 g/kg) also eliminated cardioprotection produced by IPC. In contrast, the BH4 precursor sepiapterin (2 mg/kg iv) restored the beneficial effects of IPC on myocardial BH4 concentrations, eNOS dimerization, and infarct size during hyperglycemia. A-23871 increased Hsp90-eNOS association (0.33 ± 0.06 to 0.59 ± 0.3) and nitric oxide production (184 ± 17%) in human coronary artery endothelial cells cultured in normal (5.5 mM) but not high (20 mM) glucose media. These data indicate that hyperglycemia eliminates protection by IPC via decreases in myocardial BH4 concentration and disruption of the association of Hsp90 with eNOS. The results suggest that eNOS dysregulation may be a central mechanism of impaired cardioprotection during hyperglycemia.


2008 ◽  
Vol 108 (4) ◽  
pp. 634-642 ◽  
Author(s):  
Weidong Gu ◽  
Franz Kehl ◽  
John G. Krolikowski ◽  
Paul S. Pagel ◽  
David C. Warltier ◽  
...  

Background A growing body of evidence indicates that statins decrease perioperative cardiovascular risk and that these drugs may be particularly efficacious in diabetes. Diabetes and hyperglycemia abolish the cardioprotective effects of ischemic preconditioning (IPC). The authors tested the hypothesis that simvastatin restores the beneficial effects of IPC during hyperglycemia through a nitric oxide-mediated mechanism. Methods Myocardial infarct size was measured in dogs (n = 76) subjected to coronary artery occlusion and reperfusion in the presence or absence of hyperglycemia (300 mg/dl) with or without IPC in separate groups. Additional dogs received simvastatin (20 mg orally daily for 3 days) in the presence or absence of IPC and hyperglycemia. Other dogs were pretreated with N-nitro-l-arginine methyl ester (30 mg intracoronary) with or without IPC, hyperglycemia, and simvastatin. Results Ischemic preconditioning significantly (P &lt; 0.05) reduced infarct size (n = 7, 7 +/- 2%) as compared with control (n = 7, 29 +/- 3%). Hyperglycemia (n = 7), simvastatin (n = 7), N-nitro-l-arginine methyl ester alone (n = 7), and simvastatin with hyperglycemia (n = 6) did not alter infarct size. Hyperglycemia (n = 7, 24 +/- 2%), but not N-nitro-l-arginine methyl ester (n = 5, 10 +/- 1%), blocked the protective effects of IPC. Simvastatin restored the protective effects of IPC in the presence of hyperglycemia (n = 7, 14 +/- 1%), and this beneficial action was blocked by N-nitro-l-arginine methyl ester (n = 7, 29 +/- 4%). Conclusions The results indicate that simvastatin restored the cardioprotective effects of IPC during hyperglycemia by nitric oxide-mediated signaling. The results also suggest that enhanced cardioprotective signaling could be a mechanism for statin-induced decreases in perioperative cardiovascular risk.


2019 ◽  
Vol 316 (3) ◽  
pp. H743-H750 ◽  
Author(s):  
Diamela T. Paez ◽  
Mariana Garces ◽  
Valeria Calabró ◽  
Eliana P. Bin ◽  
Verónica D’Annunzio ◽  
...  

Adenosine is involved in classic preconditioning in most species and acts especially through adenosine A1and A3receptors. The aim of the present study was to evaluate whether remote ischemic preconditioning (rIPC) activates adenosine A1receptors and improves mitochondrial function, thereby reducing myocardial infarct size. Isolated rat hearts were subjected to 30 min of global ischemia and 60 min of reperfusion [ischemia-reperfusion (I/R)]. In a second group, before isolation of the heart, a rIPC protocol (3 cycles of hindlimb I/R) was performed. Infarct size was measured with tetrazolium staining, and Akt/endothelial nitric oxide (NO) synthase (eNOS) expression/phosphorylation and mitochondrial function were evaluated after ischemia at 10 and 60 min of reperfusion. As expected, rIPC significantly decreased infarct size. This beneficial effect was abolished only when 8-cyclopentyl-1,3-dipropylxanthine (adenosine A1receptor blocker) and NG-nitro-l-arginine methyl ester (NO synthesis inhibitor) were administered during the reperfusion phase. At the early reperfusion phase, rIPC induced significant Akt and eNOS phosphorylation, which was abolished by the perfusion with an adenosine A1receptor blocker. I/R led to impaired mitochondrial function, which was attenuated by rIPC and mediated by adenosine A1receptors. In conclusion, we demonstrated that rIPC limits myocardial infarct by activation of adenosine A1receptors at early reperfusion in the isolated rat heart. Interestingly, rIPC appears to reduce myocardial infarct size by the Akt/eNOS pathway and improves mitochondrial function during myocardial reperfusion.NEW & NOTEWORTHY Adenosine is involved in classic preconditioning and acts especially through adenosine A1and A3receptors. However, its role in the mechanism of remote ischemic preconditioning is controversial. In this study, we demonstrated that remote ischemic preconditioning activates adenosine A1receptors during early reperfusion, inducing Akt/endothelial nitric oxide synthase phosphorylation and improving mitochondrial function, thereby reducing myocardial infarct size.


1999 ◽  
Vol 90 (3) ◽  
pp. 812-821 ◽  
Author(s):  
Mohamed S. Ismaeil ◽  
Igor Tkachenko ◽  
Kurt A. Gamperl ◽  
Robert F. Hickey ◽  
Brian A. Cason

Background Isoflurane has cardioprotective effects that mimic the ischemic preconditioning phenomenon. Because adenosine triphosphate-sensitive potassium channels and adenosine receptors are implicated in ischemic preconditioning, the authors wanted to determine whether the preconditioning effect of isoflurane is mediated through these pathways. Methods Myocardial infarct size was measured in seven groups of propofol-anesthetized rabbits, each subjected to 30 min of anterolateral coronary occlusion followed by 3 h of reperfusion. Groups differed only in the pretreatments given, and controls received no pretreatment. An ischemia-preconditioned group was pretreated with 5 min of coronary occlusion and 15 min of reperfusion. An isoflurane-preconditioned group was pretreated with 15 min end-tidal isoflurane, 1.1%, and then 15 min of washout. An isoflurane-plus-glyburide group was administered 0.33 mg/kg glyburide intravenously before isoflurane pretreatment. An isoflurane plus 8-(p-sulfophenyl)-theophylline (SPT) group received 7.5 mg/kg SPT intravenously before isoflurane. Additional groups were administered identical doses of glyburide or SPT, but they were not pretreated with isoflurane. Infarct size and area at risk were defined by staining. Data were analyzed by analysis of variance or covariance. Results Infarct size, expressed as a percentage of the area at risk (IS:AR) was 30.2+/-11% (SD) in controls. Ischemic preconditioning and isoflurane preexposure reduced myocardial infarct size significantly, to 8.3+/-5% and 13.4+/-8.2% (P&lt;0.05), respectively. Both glyburide and SPT pretreatment eliminated the preconditioning-like effect of isoflurane (IS:AR = 30.0+/-9.1% and 29.2+/-12.6%, respectively; P = not significant). Neither glyburide nor SPF alone increased infarct size (IS:AR = 33.9+/-7.6% and 31.8+/-12.7%, respectively; P = not significant). Conclusions Glyburide and SPT abolished the preconditioning-like effects of isoflurane but did not increase infarct size when administered in the absence of isoflurane. Isoflurane-induced preconditioning and ischemia-induced preconditioning share similar mechanisms, which include activation of adenosine triphosphate-sensitive potassium channels and adenosine receptors.


1997 ◽  
Vol 87 (2) ◽  
pp. 361-370 ◽  
Author(s):  
Judy R. Kersten ◽  
Todd J. Schmeling ◽  
Paul S. Pagel ◽  
Garrett J. Gross ◽  
David C. Warltier

Background The authors tested the hypothesis that isoflurane directly preconditions myocardium against infarction via activation of K(ATP) channels and that the protection afforded by isoflurane is associated with an acute memory phase similar to that of ischemic preconditioning. Methods Barbiturate-anesthetized dogs (n = 71) were instrumented for measurement of systemic hemodynamics. Myocardial infarct size was assessed by triphenyltetrazolium chloride staining. All dogs were subjected to a single prolonged (60 min) left anterior descending coronary artery (LAD) occlusion followed by 3 h of reperfusion. Ischemic preconditioning was produced by four 5-min LAD occlusions interspersed with 5-min periods of reperfusion before the prolonged LAD occlusion and reperfusion. The actions of isoflurane to decrease infarct size were examined in dogs receiving 1 minimum alveolar concentration (MAC) isoflurane that was discontinued 5 min before prolonged LAD occlusion. The interaction between isoflurane and ischemic preconditioning on infarct size was evaluated in dogs receiving isoflurane before and during preconditioning LAD occlusions and reperfusions. To test whether the cardioprotection produced by isoflurane can mimic the acute memory of ischemic preconditioning, isoflurane was discontinued 30 min before prolonged LAD occlusion and reperfusion. The mechanism of isoflurane-induced cardioprotection was evaluated in two final groups of dogs pretreated with glyburide in the presence or absence of isoflurane. Results Myocardial infarct size was 25.3 +/- 2.9% of the area at risk during control conditions. Isoflurane and ischemic preconditioning produced significant (P &lt; 0.05) and equivalent reductions in infarct size (ischemic preconditioning alone, 9.6 +/- 2.0; isoflurane alone, 11.8 +/- 2.7; isoflurane and ischemic preconditioning, 5.1 +/- 1.9%). Isoflurane-induced reduction of infarct size also persisted 30 min after discontinuation of the anesthetic (13.9 +/- 1.5%), independent of hemodynamic effects during LAD occlusion. Glyburide alone had no effect on infarct size (28.3 +/- 3.9%), but it abolished the protective effects of isoflurane (27.1 +/- 4.6%). Conclusions Isoflurane directly preconditions myocardium against infarction via activation of K(ATP) channels in the absence of hemodynamic effects and exhibits acute memory of preconditioning in vivo.


1994 ◽  
Vol 723 (1) ◽  
pp. 333-336 ◽  
Author(s):  
MONIQUE M. G. KONING ◽  
SANDRA DE ZEEUW ◽  
SELMA NIEUKOOP ◽  
JAN WILLEM DE JONG ◽  
PIETER D. VERDOUW

2007 ◽  
Vol 293 (5) ◽  
pp. H2845-H2852 ◽  
Author(s):  
Rong Jiang ◽  
Amanda Zatta ◽  
Hajime Kin ◽  
Ningping Wang ◽  
James G. Reeves ◽  
...  

Protease-activated receptor-2 (PAR-2) may have proinflammatory effects in some tissues and protective effects in other tissues. The role of PAR-2 in in vivo myocardial ischemia-reperfusion has not yet been determined. This study tested the hypothesis that PAR-2 activation with the PAR-2 agonist peptide SLIGRL (PAR-2 AP) reduces myocardial infarct size when given at reperfusion in vivo, and this cardioprotection involves the ERK1/2 pathway. Anesthetized rats were randomly assigned to the following groups with 30 min of regional ischemia and 3 h reperfusion: 1) control with saline; 2) vehicle (DMSO); 3) PAR-2 AP, 1 mg/kg given intravenously 5 min before reperfusion; 4) scrambled peptide (SP), 1 mg/kg; 5) the ERK1/2 inhibitor PD-98059 (PD), 0.3 mg/kg given 10 min before reperfusion; 6) the phosphatidylinositol 3-kinase inhibitor LY-294002 (LY), 0.3 mg/kg given 10 min before reperfusion; 7) PD + PAR-2 AP, 0.3 mg/kg PD given 5 min before PAR-2 AP; 8) LY + PAR-2 AP, 0.3 mg/kg LY given 5 min before PAR-2 AP; 9) chelerythrine (Chel) alone, 5 mg/kg given 10 min before reperfusion; and 10) Chel + PAR-2 AP, Chel was given 5 min before PAR-2 AP (10 min before reperfusion). Activation of ERK1/2, ERK5, Akt, and the downstream targets of ERK1/2 [P90 RSK and bcl-xl/bcl-2-associated death promoter (BAD)] was determined by Western blot analysis in separate experiments. PAR-2 AP significantly reduced infarct size compared with control (36 ± 2% vs. 53 ± 1%, P < 0.05), and SP had no effect on infarct size (53 ± 3%). PAR-2 AP significantly increased phosphorylation of ERK1/2, p90RSK, and BAD but not Akt or ERK5. Accordingly, the infarct-size sparing effect of PAR-2 AP was abolished by PD (PAR-2 AP, 36 ± 2% vs. PD + PAR-2 AP, 50 ± 1%; P < 0.05) and by Chel (Chel + PAR-2 AP, 58 ± 2%) but not by LY (PAR-2 AP, 36 ± 2% vs. LY + PAR-2 AP, 38 ± 3%; P > 0.05). Therefore, PAR-2 activation is cardioprotective in the in vivo rat heart ischemia-reperfusion model, and this protection involves the ERK1/2 pathway and PKC.


Sign in / Sign up

Export Citation Format

Share Document