Acute cardiovascular responses to a single bout of high intensity inspiratory muscle strength training in healthy young adults

Author(s):  
Claire M. DeLucia ◽  
Dean R. DeBonis ◽  
Sarah M. Schwyhart ◽  
E. Fiona Bailey

High intensity, low volume inspiratory muscle strength training (IMST) has favorable effects on casual systolic blood pressure and systemic vascular resistance. However, the acute effects of IMST on heart rate (HR), blood pressure (BP) and sympathetic regulation of vascular resistance and the trajectory of post exercise recovery are not known. We recruited fourteen young adults (7 women/7 men, age: 22±2 years) to perform a single bout of high intensity IMST (inspiratory resistance set at 75% of maximal inspiratory pressure) importantly, female and male subjects were matched in regard to the target inspiratory pressure and target inspiratory muscle work per breath. We recorded HR, beat-to-beat changes in BP and postganglionic, muscle sympathetic nerve activities (MSNA) continuously throughout Baseline, a single bout of IMST (comprising five sets of 6 inspiratory efforts) and in Recovery. We show that one bout of IMST does not effect a change in BP however, it effects a significant increase in HR (68.4 ±11.7 BPM vs. 85.4 ±13.6 BPM; p<0.001) and a significant decline in MSNA (6.8 ±1.1 bursts/15s bin; p<0.001 vs. 3.6 ±0.6 bursts/15s bin) relative to Baseline. Remarkably, among men MSNA rebounded to Baseline levels within the first minute of Recovery however in women, MSNA suppression persisted for 5 minutes. We show that in healthy young adults, high intensity, low volume respiratory training results in the acute suppression of MSNA. Importantly, MSNA suppression is of greater magnitude and longer duration in women than in men.

2020 ◽  
Vol 129 (3) ◽  
pp. 449-458
Author(s):  
Guadalupe Elizabeth Ramos-Barrera ◽  
Claire M. DeLucia ◽  
E. Fiona Bailey

Older, obese adults with moderate-severe obstructive sleep apnea who perform 5 min/day high-intensity inspiratory muscle strength training (IMST) exhibit lowered casual and nighttime systolic blood pressure and sympathetic nervous outflow. In contrast, adults assigned to a control (low-intensity) intervention exhibit no change in casual blood pressure or muscle sympathetic nerve activity and a trend toward increased overnight blood pressure. Remarkably, adherence to IMST even among sleep-deprived and exercise-intolerant adults is high (96%).


Author(s):  
Toshiyuki Ohya ◽  
Kenta Kusanagi ◽  
Jun Koizumi ◽  
Ryosuke Ando ◽  
Keisho Katayama ◽  
...  

Purpose: Inspiratory muscle strength training (IMST) can improve exercise performance. Increased maximal inspiratory mouth pressure (MIP) could be beneficial for swimmers to enhance their performance. This study aimed to clarify the effect of high-intensity IMST for 6 weeks on MIP and swimming performance in highly trained competitive swimmers. Methods: Thirty male highly trained competitive swimmers were assigned to high-intensity IMST (HI; n = 10), moderate-intensity IMST (MOD; n = 10), and control (n = 10) groups. The 6-week IMST intervention comprised twice daily sessions for 6 d/wk at inspiratory pressure threshold loads equivalent to 75% MIP (HI) and 50% MIP (MOD). Before and after the intervention, MIP and swimming performance were assessed. Swimming performance was evaluated in free and controlled frequency breathing 100-m freestyle swimming time trials in a 25-m pool. For controlled frequency breathing, participants took 1 breath every 6 strokes. Results: The MIP values after 2 and 6 weeks of IMST in the HI and MOD groups were significantly higher than those before IMST (P = .0001). The magnitudes of the MIP increases after 6 weeks of IMST did not differ between the HI (13.4% [8.7%]) and MOD (13.1% [10.1%]) groups (P = .44). The 100-m freestyle swimming times under the controlled frequency condition were significantly shorter after IMST than those before IMST in both the HI (P = .046) and MOD (P = .042) groups. Conclusions: Inspiratory pressure threshold load equivalent to 50% MIP could be sufficient to improve MIP and swimming performance under the controlled frequency breathing condition in highly trained competitive swimmers.


Author(s):  
Patricia Rehder-Santos ◽  
Raphael M. Abreu ◽  
Étore De F. Signini ◽  
Claudio D. da Silva ◽  
Camila A. Sakaguchi ◽  
...  

Background and Objective: Inspiratory muscle training (IMT) produced outstanding results in the physical performance of active subjects; however, little is known about the best training intensity for this population. The objective was to investigate the impact of an IMT of high intensity, using the critical inspiratory pressure (CIP), on inspiratory muscle strength (IMS), inspiratory muscle endurance (IME), peak power, and oxygen uptake of recreational cyclists; and to compare these results with moderate-intensity IMT (60% of maximal inspiratory pressure [MIP]). Methods: Thirty apparently healthy male recreational cyclists, 20–40 years old, underwent 11 weeks of IMT (3 times per week; 55 min per session). Participants were randomized into 3 groups: sham group (6 cmH2O; n = 8); 60% MIP (MIP60; n = 10) and CIP (n = 12). All participants performed the IMS test and incremental IME test at the first, fifth, ninth, and 13th weeks of the experimental protocol. Cardiopulmonary exercise testing was performed on an electromagnetic braking cycle ergometer pre-IMT and post-IMT. Data were analyzed using a 2-way repeated measures ANOVA (group and period factors). Results: IMS increased in CIP and MIP60 groups at the ninth and 13th weeks compared with the sham group (P < .001; β = 0.99). Regarding IME, there was an interaction between the CIP and MIP60 groups in all periods, except in the initial evaluation (P < .001; β = 1.00). Peak power (in watts) increased after IMT in CIP and MIP60 groups (P = .01; β = 0.67). Absolute oxygen uptake did not increase after IMT (P = .49; β = 0.05). Relative oxygen uptake to lean mass values did not change significantly (P = .48; β = 0.05). Conclusion: High-intensity IMT is beneficial on IMS, IME, and peak power, but does not provide additional gain to moderate intensity in recreational cyclists.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Kaitlin Freeberg ◽  
Thomas Heinbockel ◽  
Matthew Rossman ◽  
Rachel Jackman ◽  
Lindsey Jankowski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document