Inspiratory muscle training reduces diaphragm activation and dyspnea during exercise in COPD

2018 ◽  
Vol 125 (2) ◽  
pp. 381-392 ◽  
Author(s):  
Daniel Langer ◽  
Casey Ciavaglia ◽  
Azmy Faisal ◽  
Katherine A. Webb ◽  
J. Alberto Neder ◽  
...  

Among patients with chronic obstructive pulmonary disease (COPD), those with the lowest maximal inspiratory pressures experience greater breathing discomfort (dyspnea) during exercise. In such individuals, inspiratory muscle training (IMT) may be associated with improvement of dyspnea, but the mechanisms for this are poorly understood. Therefore, we aimed to identify physiological mechanisms of improvement in dyspnea and exercise endurance following inspiratory muscle training (IMT) in patients with COPD and low maximal inspiratory pressure (Pimax). The effects of 8 wk of controlled IMT on respiratory muscle function, dyspnea, respiratory mechanics, and diaphragm electromyography (EMGdi) during constant work rate cycle exercise were evaluated in patients with activity-related dyspnea (baseline dyspnea index <9). Subjects were randomized to either IMT or a sham training control group ( n = 10 each). Twenty subjects (FEV1 = 47 ± 19% predicted; Pimax  = −59 ± 14 cmH2O; cycle ergometer peak work rate = 47 ± 21% predicted) completed the study; groups had comparable baseline lung function, respiratory muscle strength, activity-related dyspnea, and exercise capacity. IMT, compared with control, was associated with greater increases in inspiratory muscle strength and endurance, with attendant improvements in exertional dyspnea and exercise endurance time (all P < 0.05). After IMT, EMGdi expressed relative to its maximum (EMGdi/EMGdimax) decreased ( P < 0.05) with no significant change in ventilation, tidal inspiratory pressures, breathing pattern, or operating lung volumes during exercise. In conclusion, IMT improved inspiratory muscle strength and endurance in mechanically compromised patients with COPD and low Pimax. The attendant reduction in EMGdi/EMGdimax helped explain the decrease in perceived respiratory discomfort despite sustained high ventilation and intrinsic mechanical loading over a longer exercise duration. NEW & NOTEWORTHY In patients with COPD and low maximal inspiratory pressures, inspiratory muscle training (IMT) may be associated with improvement of dyspnea, but the mechanisms for this are poorly understood. This study showed that 8 wk of home-based, partially supervised IMT improved respiratory muscle strength and endurance, dyspnea, and exercise endurance. Dyspnea relief occurred in conjunction with a reduced activation of the diaphragm relative to maximum in the absence of significant changes in ventilation, breathing pattern, and operating lung volumes.

Author(s):  
Reid A. Mitchell ◽  
Scott T. Apperely ◽  
Satvir S. Dhillon ◽  
Julia Zhang ◽  
Kyle G. Boyle ◽  
...  

This case report characterizes the physiological responses to incremental cycling and determines the effects of 12 weeks of inspiratory muscle training (IMT) on respiratory muscle strength, exercise capacity and dyspnea in a physically active 59-year-old female, four years after a left-sided extra-pleural pneumonectomy (EPP). On separate days, a symptom limited incremental exercise test and a constant work rate (CWR) test at 75% of peak work rate (WR) were completed, followed by 12 weeks of IMT and another CWR test. IMT consisted of two sessions of 30 repetitions twice daily for 5 days per week. Physiological and perceptual variables were measured throughout each exercise test. The participant had a total lung capacity that was 43% predicted post-EPP. A rapid and shallow breathing pattern was adopted throughout exercise, and the ratio of minute ventilation to carbon dioxide output was elevated for a given work rate. Oxygen uptake was 74%predicted and WR was 88%predicted. Following IMT, maximal inspiratory pressure improved by 36% (-27.1 cmH2O) and endurance time by 31s, with no observable changes in any submaximal or peak cardiorespiratory variables during exercise. The intensity and unpleasantness of dyspnea increased by 2 and 3 Borg 0-10 units, respectively, at the highest equivalent submaximal exercise time achieved on both tests. Despite having undergone a significant reduction in lung volume post-EPP, the participant achieved a relatively normal peak incremental WR, which may reflect a high level of physical conditioning. This case report also demonstrates that IMT can effectively increase respiratory muscle strength several years following EPP.


2021 ◽  
Vol 77 (1) ◽  
Author(s):  
Anri Human ◽  
Brenda M. Morrow

Background: Children with neuromuscular diseases (NMD) are at risk of morbidity and mortality because of progressive respiratory muscle weakness and ineffective cough. Inspiratory muscle training (IMT) aims to preserve or improve respiratory muscle strength, thereby reducing morbidity and improving health-related quality of life (HRQoL).Objectives: To describe the safety and feasibility of a 6-week IMT programme using an electronic threshold device (Powerbreathe®). Any adverse events and changes in functional ability, spirometry, peak expiratory cough flow (PECF), inspiratory muscle strength and HRQoL (Pediatric Quality of Life [PedsQL]) were recorded.Methods: A convenience sample of eight participants (n = 4 boys; median [interquartile range {IQR}] age: 12.21 [9.63–16.05] years) with various NMD were included in a pre-experimental, observational pre-test post-test feasibility study. Training consisted of 30 breaths, twice daily, 5 days a week, for 6 weeks.Results: There were significant pre- to post-intervention improvements in upper limb function and coordination (p = 0.03) and inspiratory muscle strength: maximum inspiratory mouth pressure (Pimax) (p = 0.01); strength-index (p = 0.02); peak inspiratory flow (PIF) (p = 0.02), with no evidence of change in spirometry, PECF or HRQoL. No adverse events occurred and participant satisfaction and adherence levels were high.Conclusion: Inspiratory muscle training (at an intensity of 30% Pimax) appears safe, feasible and acceptable, in a small sample of children and adolescents with NMD and was associated with improved inspiratory muscle strength, PIF and upper limb function and coordination.Clinical implications: Larger, longer-term randomised controlled trials are warranted to confirm the safety and efficacy of IMT as an adjunct respiratory management strategy in children with NMD.


Clinics ◽  
2011 ◽  
Vol 66 (10) ◽  
pp. 1721-1727 ◽  
Author(s):  
Marcela Cangussu Barbalho-Moulim ◽  
Gustavo Peixoto Soares Miguel ◽  
Eli Maria Pazzianotto Forti ◽  
Flavio do Amaral Campos ◽  
Dirceu Costa

Author(s):  
Monika Piotrowska ◽  
Paulina Okrzymowska ◽  
Wojciech Kucharski ◽  
Krystyna Rożek-Piechura

Regardless of the management regime for heart failure (HF), there is strong evidence supporting the early implementation of exercise-based cardiac rehabilitation (CR). Respiratory therapy is considered to be an integral part of such secondary prevention protocols. The aim of the study was to evaluate the effect of inspiratory muscle training (IMT) on exercise tolerance and the functional parameters of the respiratory system in patients with heart failure involved in cardiac rehabilitation. The study included 90 patients with HF who took part in the second-stage 8-week cycle of cardiac rehabilitation (CR). They were randomly divided into three groups: Group I underwent CR and IMT; Group II only CR; and patients in Group III underwent only the IMT. Before and after the 8-week cycle, participants were assessed for exercise tolerance and the functional parameters of respiratory muscle strength. Significant statistical improvement concerned the majority of the hemodynamic parameters, lung function parameters, and respiratory muscle strength in the first group. Moreover, the enhancement in the exercise tolerance in the CR + IMT group was accompanied by a negligible change in the HRpeak. The results confirm that the addition of IMT to the standard rehabilitation process of patients with heart failure can increase the therapeutic effect while influencing some of the parameters measured by exercise electrocardiography and respiratory function.


2016 ◽  
Vol 30 (12) ◽  
pp. 1165-1174 ◽  
Author(s):  
Melih Zeren ◽  
Rengin Demir ◽  
Zerrin Yigit ◽  
Hulya N Gurses

Objective: To investigate the effects of inspiratory muscle training on pulmonary function, respiratory muscle strength and functional capacity in patients with atrial fibrillation. Design: Prospective randomized controlled single-blind study. Setting: Cardiology department of a university hospital. Subjects: A total of 38 patients with permanent atrial fibrillation were randomly allocated to either a treatment group ( n = 19; age 66.2 years (8.8)) or a control group ( n = 19; age 67.1 years (6.4)). Methods: The training group received inspiratory muscle training at 30% of maximal inspiratory pressure for 15 minutes twice a day, 7 days a week, for 12 weeks alongside the standard medical treatment. The control group received standard medical treatment only. Spirometry, maximal inspiratory and expiratory pressures and 6-minute walking distance was measured at the beginning and end of the study. Results: There was a significant increase in maximal inspiratory pressure (27.94 cmH2O (8.90)), maximal expiratory pressure (24.53 cmH2O (10.34)), forced vital capacity (10.29% (8.18) predicted), forced expiratory volume in one second (13.88% (13.42) predicted), forced expiratory flow 25%–75% (14.82% (12.44) predicted), peak expiratory flow (19.82% (15.62) predicted) and 6-minute walking distance (55.53 m (14.13)) in the training group ( p < 0.01). No significant changes occurred in the control group ( p > 0.05). Conclusion: Inspiratory muscle training can improve pulmonary function, respiratory muscle strength and functional capacity in patients with atrial fibrillation.


2021 ◽  
Vol 45 (4) ◽  
pp. 264-273
Author(s):  
Fiona Verdine Dsouza ◽  
Sampath Kumar Amaravadi ◽  
Stephen Rajan Samuel ◽  
Harish Raghavan ◽  
Nagaraja Ravishankar

To determine the effect of inspiratory muscle training (IMT) on pulmonary function, respiratory muscle strength (RMS), and functional capacity in patients undergoing cardiac surgery. The PubMed, PEDro, CINAHL, Web of Science, CENTRAL, and EMBASE databases were searched from inception to June 2020. Randomized controlled trials (RCTs) that evaluated patients who underwent cardiac surgery were included in this review. Meta-analysis performed using a random-effects model showed that the mean difference in forced vital capacity, forced expiratory volume in 1 second, 6-minute walk distance, and RMS was 3.47% (95% confidence interval [CI], 0.57 to 6.36), 5.80% (95% CI, 2.03 to 9.56), 78.05 m (95% CI, 60.92 to 95.18), and 4.8 cmH2O (95% CI, -4.00 to 13.4), respectively. There is strong evidence that IMT improves inspiratory muscle strength, pulmonary function, and functional capacity, and reduces the length of hospital stay in patients undergoing cardiac surgery.


2020 ◽  
Author(s):  
James Manifield ◽  
Andrew Winnard ◽  
Emily Hume ◽  
Matthew Armstrong ◽  
Katherine Baker ◽  
...  

Abstract Background The ageing process can result in the decrease of respiratory muscle strength and consequently increased work of breathing and associated breathlessness during activities of daily living in older adults. Objective This systematic review and meta-analysis aims to determine the effects of inspiratory muscle training (IMT) in healthy older adults. Methods A systematic literature search was conducted across four databases (Medline/Pubmed, Web of Science, Cochrane Library CINAHL) using a search strategy consisting of both MeSH and text words including older adults, IMT and functional capacity. The eligibility criteria for selecting studies involved controlled trials investigating IMT via resistive or threshold loading in older adults (&gt;60 years) without a long-term condition. Results Seven studies provided mean change scores for inspiratory muscle pressure and three studies for functional capacity. A significant improvement was found for maximal inspiratory pressure (PImax) following training (n = 7, 3.03 [2.44, 3.61], P = &lt;0.00001) but not for functional capacity (n = 3, 2.42 [−1.28, 6.12], P = 0.20). There was no significant correlation between baseline PImax and post-intervention change in PImax values (n = 7, r = 0.342, P = 0.453). Conclusions IMT can be beneficial in terms of improving inspiratory muscle strength in older adults regardless of their initial degree of inspiratory muscle weakness. Further research is required to investigate the effect of IMT on functional capacity and quality of life in older adults.


Sign in / Sign up

Export Citation Format

Share Document