Role of pleural pressure in the coupling between the intercostal muscles and the ribs

2007 ◽  
Vol 102 (6) ◽  
pp. 2332-2337 ◽  
Author(s):  
André De Troyer ◽  
Dimitri Leduc

The inspiratory intercostal muscles elevate the ribs and thereby elicit a fall in pleural pressure (ΔPpl) when they contract. In the present study, we initially tested the hypothesis that this ΔPpl does, in turn, oppose the rib elevation. The cranial rib displacement (Xr) produced by selective activation of the parasternal intercostal muscle in the fourth interspace was measured in dogs, first with the rib cage intact and then after ΔPpl was eliminated by bilateral pneumothorax. For a given parasternal contraction, Xr was greater after pneumothorax; the increase in Xr per unit decrease in ΔPpl was 0.98 ± 0.11 mm/cmH2O. Because this relation was similar to that obtained during isolated diaphragmatic contraction, we subsequently tested the hypothesis that the increase in Xr observed during breathing after diaphragmatic paralysis was, in part, the result of the decrease in ΔPpl, and the contribution of the difference in ΔPpl to the difference in Xr was determined by using the relation between Xr and ΔPpl during passive inflation. With diaphragmatic paralysis, Xr during inspiration increased approximately threefold, and 47 ± 8% of this increase was accounted for by the decrease in ΔPpl. These observations indicate that 1) ΔPpl is a primary determinant of rib motion during intercostal muscle contraction and 2) the decrease in ΔPpl and the increase in intercostal muscle activity contribute equally to the increase in inspiratory cranial displacement of the ribs after diaphragm paralysis.

2004 ◽  
Vol 96 (2) ◽  
pp. 483-488 ◽  
Author(s):  
Theodore A. Wilson ◽  
Andre De Troyer

The mechanisms of respiratory action of the intercostal muscles were studied by measuring the effect of external forces (F) applied to the ribs and by modeling the effect of F exerted by the intercostal muscles. In five dogs, with the airway occluded, cranial F were applied to individual rib pairs, from the 2nd to the 11th rib pair, and the change in airway opening pressure (Pao) was measured. The ratio Pao/F increases with increasing rib number in the upper ribs (2nd to 5th) and decreases in the lower ribs (5th to 11th). These data were incorporated into a model for the geometry of the ribs and intercostal muscles, and Pao/F was calculated from the model. For interspaces 2-8, the calculated values agree reasonably well with previously measured values. From the modeling, two mechanisms of intercostal muscle action are identified. One is the well-known Hamberger mechanism, modified to account for the three-dimensional geometry of the rib cage. This mechanism depends on the slant of an intercostal muscle relative to the ribs and on the resulting difference between the moments applied to the upper and lower ribs that bound each interspace. The second is a new mechanism that depends on the difference between the values of Pao/F for the upper and lower ribs.


1992 ◽  
Vol 73 (3) ◽  
pp. 979-986 ◽  
Author(s):  
A. F. DiMarco ◽  
J. R. Romaniuk ◽  
G. S. Supinski

Recent studies suggest that the external intercostal (EI) muscles of the upper rib cage, like the parasternals (PA), play an important ventilatory role, even during eupneic breathing. The purpose of the present study was to further assess the ventilatory role of the EI muscles by determining their response to various static and dynamic respiratory maneuvers and comparing them with the better-studied PA muscles. Applied interventions included 1) passive inflation and deflation, 2) abdominal compression, 3) progressive hypercapnia, and 4) response to bilateral cervical phrenicotomy. Studies were performed in 11 mongrel dogs. Electromyographic (EMG) activities were monitored via bipolar stainless steel electrodes. Muscle length (percentage of resting length) was monitored with piezoelectric crystals. With passive rib cage inflation produced either with a volume syringe or abdominal compression, each muscle shortened; with passive deflation, each muscle lengthened. During eupneic breathing, each muscle was electrically active and shortened to a similar degree. In response to progressive hypercapnia, peak EMG of each intercostal muscle increased linearly and to a similar extent. Inspiratory shortening also increased progressively with increasing PCO2, but in a curvilinear fashion with no significant differences in response among intercostal muscles. In response to phrenicotomy, the EMG and degree of inspiratory shortening of each intercostal muscle increased significantly. Again, the response among intercostal muscles was not significantly different.(ABSTRACT TRUNCATED AT 250 WORDS)


2012 ◽  
Vol 112 (4) ◽  
pp. 529-534 ◽  
Author(s):  
André De Troyer

The diaphragm acting alone causes a cranial displacement of the lower ribs and a caudal displacement of the upper ribs. The respiratory effect of the lower rib displacement, however, is uncertain. In the present study, two sets of experiments were performed in dogs to assess this effect. In the first, all the inspiratory intercostal muscles were severed, so that the diaphragm was the only muscle active during inspiration, and the normal inspiratory cranial displacement of the lower ribs was suppressed at regular intervals. In the second experiment, the animals were given a muscle relaxant to abolish respiratory muscle activity, and external, cranially oriented forces were applied to the lower rib pairs to simulate the action of the diaphragm on these ribs. The data showed that 1) holding the lower ribs stationary during spontaneous, isolated diaphragm contraction had no effect on the change in lung volume during unimpeded inspiration and no effect on the fall in pleural pressure (Ppl) during occluded breaths; 2) the procedure, however, caused an increase in the caudal displacement of the upper ribs; and 3) pulling the lower rib pairs cranially induced a cranial displacement of the upper ribs and a small fall in Ppl. These observations indicate that the force applied on the lower ribs by the diaphragm during spontaneous contraction, acting through the interdependence of the ribs, is transmitted to the upper ribs and has an inspiratory effect on the lung. However, this effect is very small compared to that of the descent of the dome.


1986 ◽  
Vol 60 (5) ◽  
pp. 1692-1699 ◽  
Author(s):  
A. De Troyer ◽  
V. Ninane

It is traditionally considered that the difference in orientation of the muscle fibers makes the external intercostals elevate the ribs and the internal interosseous intercostals lower the ribs during breathing. This traditional view, however, has recently been challenged by the observation that the external and internal interosseous intercostals, when contracting alone in a single interspace, have a similar effect on the ribs into which they insert. This view has also been challenged by the observation that the external and internal intercostals in a given interspace often change their length in the same direction during breathing. In an attempt to clarify the respiratory function of these muscles, we studied eight supine lightly anesthetized dogs during quiet breathing and during static inspiratory efforts. In each animal electromyographic (EMG) recordings from the external and internal interosseous intercostals were obtained in all interspaces from the second to the eighth, and selective denervations were systematically performed to ensure with complete certainty the origin of the recorded EMG activities. The external intercostals were only activated in phase with inspiration, whereas the internal interosseous intercostals were only activated in phase with expiration. These phasic EMG activities, however, were generally small in magnitude, and the muscles were often silent. Indeed, activation of the externals was always confined to the upper portion of the rib cage, whereas activation of the internals was limited to the lower portion of the rib cage. Internal intercostal activation always occurred sequentially along a caudocephalic gradient. These observations are thus compatible with the traditional view of intercostal muscle action.(ABSTRACT TRUNCATED AT 250 WORDS)


1981 ◽  
Vol 51 (3) ◽  
pp. 547-551 ◽  
Author(s):  
J. M. Lopes ◽  
N. L. Muller ◽  
M. H. Bryan ◽  
A. C. Bryan

We studied diaphragmatic and intercostal muscle activity and the pattern of motion of rib cage and abdomen after diaphragmatic muscle fatigue in 15 newborn infants (birth wt 1,251 +/- 424 g, mean +/- SD). Rib cage and abdominal motion were monitored with magnetometers and intercostal and diaphragmatic electromyograms (EMG's) with surface electrodes. Twelve infants showed a total of 66 episodes of muscle fatigue identified by EMG frequency spectrum analysis. Two patterns of responses to fatigue were observed. In the first case, five infants consistently recruited their intercostal muscles; this was followed by a normalization of the diaphragmatic frequency spectrum. In these infants, recruitment of intercostal muscles successfully prevented any clinical deterioration. In the second, seven infants showed no change in their intercostal muscle activity, and diaphragmatic fatigue was followed by apnea. We conclude that in newborn infants the synergistic behavior of the diaphragm and intercostal muscles can maximize the performance of these muscles and, in some infants, seems to prevent development of apnea.


Author(s):  
E.M. Waddell ◽  
J.N. Chapman ◽  
R.P. Ferrier

Dekkers and de Lang (1977) have discussed a practical method of realising differential phase contrast in a STEM. The method involves taking the difference signal from two semi-circular detectors placed symmetrically about the optic axis and subtending the same angle (2α) at the specimen as that of the cone of illumination. Such a system, or an obvious generalisation of it, namely a quadrant detector, has the characteristic of responding to the gradient of the phase of the specimen transmittance. In this paper we shall compare the performance of this type of system with that of a first moment detector (Waddell et al.1977).For a first moment detector the response function R(k) is of the form R(k) = ck where c is a constant, k is a position vector in the detector plane and the vector nature of R(k)indicates that two signals are produced. This type of system would produce an image signal given bywhere the specimen transmittance is given by a (r) exp (iϕ (r), r is a position vector in object space, ro the position of the probe, ⊛ represents a convolution integral and it has been assumed that we have a coherent probe, with a complex disturbance of the form b(r-ro) exp (iζ (r-ro)). Thus the image signal for a pure phase object imaged in a STEM using a first moment detector is b2 ⊛ ▽ø. Note that this puts no restrictions on the magnitude of the variation of the phase function, but does assume an infinite detector.


1988 ◽  
Vol 27 (04) ◽  
pp. 151-153
Author(s):  
P. Thouvenot ◽  
F. Brunotte ◽  
J. Robert ◽  
L. J. Anghileri

In vitro uptake of 67Ga-citrate and 59Fe-citrate by DS sarcoma cells in the presence of tumor-bearing animal blood plasma showed a dramatic inhibition of both 67Ga and 59Fe uptakes: about ii/io of 67Ga and 1/5o of the 59Fe are taken up by the cells. Subcellular fractionation appears to indicate no specific binding to cell structures, and the difference of binding seems to be related to the transferrin chelation and transmembrane transport differences


Author(s):  
M. S. Sudakova ◽  
M. L. Vladov ◽  
M. R. Sadurtdinov

Within the ground penetrating radar bandwidth the medium is considered to be an ideal dielectric, which is not always true. Electromagnetic waves reflection coefficient conductivity dependence showed a significant role of the difference in conductivity in reflection strength. It was confirmed by physical modeling. Conductivity of geological media should be taken into account when solving direct and inverse problems, survey design planning, etc. Ground penetrating radar can be used to solve the problem of mapping of halocline or determine water contamination.


Author(s):  
Brian Willems

A human-centred approach to the environment is leading to ecological collapse. One of the ways that speculative realism challenges anthropomorphism is by taking non-human things to be as valid objects of investivation as humans, allowing a more responsible and truthful view of the world to take place. Brian Willems uses a range of science fiction literature that questions anthropomorphism both to develop and challenge this philosophical position. He looks at how nonsense and sense exist together in science fiction, the way in which language is not a guarantee of personhood, the role of vision in relation to identity formation, the difference between metamorphosis and modulation, representations of non-human deaths and the function of plasticity within the Anthropocene. Willems considers the works of Cormac McCarthy, Paolo Bacigalupi, Neil Gaiman, China Miéville, Doris Lessing and Kim Stanley Robinson are considered alongside some of the main figures of speculative materialism including Graham Harman, Quentin Meillassoux and Jane Bennett.


2019 ◽  
Author(s):  
Riccardo Spezia ◽  
Hichem Dammak

<div> <div> <div> <p>In the present work we have investigated the possibility of using the Quantum Thermal Bath (QTB) method in molecular simulations of unimolecular dissociation processes. Notably, QTB is aimed in introducing quantum nuclear effects with a com- putational time which is basically the same as in newtonian simulations. At this end we have considered the model fragmentation of CH4 for which an analytical function is present in the literature. Moreover, based on the same model a microcanonical algorithm which monitor zero-point energy of products, and eventually modifies tra- jectories, was recently proposed. We have thus compared classical and quantum rate constant with these different models. QTB seems to correctly reproduce some quantum features, in particular the difference between classical and quantum activation energies, making it a promising method to study unimolecular fragmentation of much complex systems with molecular simulations. The role of QTB thermostat on rotational degrees of freedom is also analyzed and discussed. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document