steel electrodes
Recently Published Documents


TOTAL DOCUMENTS

223
(FIVE YEARS 34)

H-INDEX

27
(FIVE YEARS 2)

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3604
Author(s):  
Miguel Ángel López Zavala ◽  
Diego Anglés Vega

In this study, stainless-steel electrodes were used to effectively oxidize naproxen and its transformation products in surface water by electrochemical oxidation in short reaction times. An evaluation of the effects of current density, chloride concentrations, and pH on the electrochemical oxidation process (mechanisms, kinetics, and reaction times) was conducted. Results showed that degradation rates of naproxen were greater, and the reaction times were shorter than those reported in other studies for other compounds and electrode materials. Oxidation naproxen and its transformation products were faster at high current densities, high chloride concentrations, and low pH conditions; however, good performance of the electrochemical oxidation process was observed at 16.3 mA/cm2 and pH 5 for both the naproxen and its transformation products, which were oxidized in only 15 min for the treated effluent and 30 min in the case of sludge. At pH 3 and 5, the number of transformation products and the reaction times required for achieving complete oxidation were greater in sludge than in the treated effluent; meanwhile, at pH 7 and 9, the number of transformation products and reaction times needed for non-detection were of the same order in both the treated effluent and the sludge.


2021 ◽  
Vol 32 (3) ◽  
pp. 13-29
Author(s):  
Adedibu Sunny Akingboye ◽  
◽  
Andy Anderson Bery ◽  
◽  

Geophysicists use electrical methods to investigate and characterise the earth’s subsurface geology. This study aims to evaluate the performance of copper and conventional stainless-steel electrodes in subsurface tomographic investigations using electrical resistivity tomography (ERT) and induced polarisation (IP) at two sites in Penang, Malaysia. Site 1 and Site 2 employed profile lengths of 200 m and 100 m, with electrodes spacing of 5.0 m and 2.5 m, respectively. In the results of the final data inversion, it was observed that the ERT and IP tomographic models of Site 1 have the best convergence limits with percentage relative differences (copper as reference model) ranging from –70% to 70%, while Site 2 recorded –8% to 8%. The electrodes performance evaluation showed that population root mean square (RMS) error and population mean absolute percentage error (MAPE) of data points between copper and stainless-steel electrodes yielded large values for Site 1 with values above 28% and that of Site 2 was less than 4%. Hence, copper (good electrical conductivity and non-polarisable) electrodes have improved the quality and quantity of infield data which give low values of population RMS error and population MAPE compared to conventional stainless-steel electrodes, especially for large unit electrode spacing surveys. Most notably, this work has contributed to the understanding of the capability of copper electrodes in providing precise and reliable inversion models for subsurface tomographic investigations in pre- and post-land uses (engineering work), hydrogeology/groundwater, environmental studies, etc.


Author(s):  
N. Yıldırım Gündoğdu ◽  
İsmail Demirci ◽  
Özcan Özyildirim ◽  
Hasan Aktarakçi ◽  
M. Emin Candansayar

2021 ◽  
Vol 25 (9) ◽  
pp. 15-17
Author(s):  
O.P. Filippova ◽  
S.Z. Kalayeva ◽  
N.L. Markelova ◽  
E.A. Korolyova

An electrochemical method for neutralizing "acidic" industrial effluents is presented. The dependences of the electrical conductivity of industrial water on the neutralization time on platinum and steel electrodes are compared.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yufan Zhang ◽  
Ahrum Sohn ◽  
Anirban Chakraborty ◽  
Choongho Yu

AbstractThermoelectrics are suited to converting dissipated heat into electricity for operating electronics, but the small voltage (~0.1 mV K−1) from the Seebeck effect has been one of the major hurdles in practical implementation. Here an approach with thermo-hydro-electrochemical effects can generate a large thermal-to-electrical energy conversion factor (TtoE factor), −87 mV K−1 with low-cost carbon steel electrodes and a solid-state polyelectrolyte made of polyaniline and polystyrene sulfonate (PANI:PSS). We discovered that the thermo-diffusion of water in PANI:PSS under a temperature gradient induced less (or more) water on the hotter (or colder) side, raising (or lowering) the corrosion overpotential in the hotter (or colder) side and thereby generating output power between the electrodes. Our findings are expected to facilitate subsequent research for further increasing the TtoE factor and utilizing dissipated thermal energy.


Author(s):  
N. Rudenko ◽  
S. Leshchenko ◽  
Yu. Kovalenko

Solar and hydrogen energy play an important role in providing a variety of industrial facilities with electricity and heat. One of the priorities of modern industry is to increase the production of environmentally friendly energy source – electrochemical synthesis of hydrogen. Modern methods of electrolysis of water do not meet the need for its use, due to the high cost of electrosynthesis of water-alkaline electrolysis, which depends on the material and energy consumption of electrolysis. The useful energy consumption for the production of energy – hydrogen at the cathode and "unnecessary" costs - for the release of oxygen at the anode, depend on the overvoltage of the respective reactions. Therefore, the most important problem of hydrogen energy is the synthesis of electrode materials with low overvoltage of O2 and H2. Electrode materials with low overvoltage will reduce the specific consumption of electricity in obtaining hydrogen by "classical" electrolysis. The prospects of reducing the cathodic and anodic overvoltage, which is a significant part of the voltage at the terminals of the cell, for the development of highly efficient and competitive technologies for hydrogen production by low-temperature electrolysis of an alkaline solution have been theoretically substantiated and experimentally confirmed. To reduce the overvoltage of the cathodic hydrogen evolution, it is proposed to modify the surface of the cathodes. The application of a small amount of electrolytic alloys of metals of the iron family with molybdenum and tungsten on nickel, cobalt, titanium and steel electrodes significantly (by 40–50 %) reduces the overvoltage of cathodic release of hydrogen from alkali solution. The use of steel electrodes, the surface of which is modified with vanadium and ni-ckel, reduces the voltage drop on the cell during the synthesis of H2 and O2 by 0.2–0.3 V, which creates conditions for reducing energy costs and energy savings.


2021 ◽  
Vol 447 (3) ◽  
pp. 75-81
Author(s):  
R.N. Nurdillayeva ◽  
Zh.G. Sauirbay ◽  
A.B. Bayeshov

Stainless steel is in great demand due to its mechanical strength, heat resistance, and resistance to corrosive environments. This article presents the result of a study of the electrochemical dissolution behavior of a stainless steel electrode (12X18H10T) at polarization by 50 Hz alternating current in a neutral medium (NaCl). Preliminary experiments have shown that the main processes do not take place when two stainless steel electrodes are polarized with an alternating current. It was observed that by the polarization of the “stainless steel – titanium” pair electrodes with alternating current, the alloy is intensively dissolved with the formation of iron (II) and chromium (III) ions. This is due to the "valve" properties of the oxide layer formed on the surface of the titanium electrode. A change in the value of the current density of the titanium and steel electrodes significantly affects the process of electrochemical dissolution of the alloy. At high current densities, the dissolution rate of the alloy decreases due to the deterioration of the current correcting properties of titanium. With an increase in the electrolyte concentration, the current efficiency is reduced as salt passivation occurs. A maximum value of the current efficiency of dissolution of stainless steel was observed at a current frequency of 50 Hz. High frequencies of the alternating current do not provide an adjustable duration of the anodic half-cycle for the oxidation reaction due to the frequent change of halfcycles of the alternating current. It was observed that increasing the temperature of the electrolyte reduces the current efficiency of the electrochemical dissolution of stainless steel electrodes. The effects of main electrochemical parameters on the electrolysis process have been investigated, and the optimal conditions of the alloy dissolution were established (іТі = 60 kA/m2 , іSS = 800 A/m2 , [NaCl] = 2.0 M, t = 30, ν = 50 Hz.).


Vacuum ◽  
2021 ◽  
pp. 110327
Author(s):  
Matej Klas ◽  
Peter Čermák ◽  
Arian Fateh Borkhari ◽  
Leonid Satrapinskyy ◽  
Štefan Matejčík ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document