scholarly journals Hyperbaric hyperoxia and normobaric reoxygenation increase excitability and activate oxygen-induced potentiation in CA1 hippocampal neurons

2010 ◽  
Vol 109 (3) ◽  
pp. 804-819 ◽  
Author(s):  
Alfredo J. Garcia ◽  
Robert W. Putnam ◽  
Jay B. Dean

Breathing hyperbaric oxygen (HBO) is common practice in hyperbaric and diving medicine. The benefits of breathing HBO, however, are limited by the risk of central nervous system O2 toxicity, which presents as seizures. We tested the hypothesis that excitability increases in CA1 neurons of the rat hippocampal slice (400 μm) over a continuum of hyperoxia that spans normobaric and hyperbaric pressures. Amplitude changes of the orthodromic population spike were used to assess neuronal O2 sensitivity before, during, and following exposure to 0, 0.6, 0.95 (control), 2.84, and 4.54 atmospheres absolute (ATA) O2. Polarographic O2 electrodes were used to measure tissue slice Po2 (PtO2). In 0.95 ATA O2, core PtO2 at 200 μm deep was 115 ± 16 Torr (mean ± SE). Increasing O2 to 2.84 and 4.54 ATA increased core PtO2 to 1,222 ± 77 and 2,037 ± 157 Torr, respectively. HBO increased the orthodromic population spike amplitude and usually induced hyperexcitability (i.e., secondary population spikes) and, in addition, a long-lasting potentiation of the orthodromic population spike that we have termed “oxygen-induced potentiation” (OxIP). Exposure to 0.60 ATA O2 and hypoxia (0.00 ATA) decreased core PtO2 to 84 ± 6 and 20 ± 4 Torr, respectively, and abolished the orthodromic response. Reoxygenation from 0.0 or 0.6 ATA O2, however, usually produced a response similar to that of HBO: hyperexcitability and activation of OxIP. We conclude that CA1 neurons exhibit increased excitability and neural plasticity over a broad range of PtO2, which can be activated by a single, hyperoxic stimulus. We postulate that transient acute hyperoxia stimulus, whether caused by breathing HBO or reoxygenation following hypoxia (e.g., disordered breathing), is a powerful stimulant for orthodromic activity and neural plasticity in the CA1 hippocampus.

1987 ◽  
Vol 410 (2) ◽  
pp. 357-361 ◽  
Author(s):  
William P. Clarke ◽  
Michael De Vivo ◽  
Sheryl G. Beck ◽  
Saul Maayani ◽  
Joseph Goldfarb

1998 ◽  
Vol 79 (3) ◽  
pp. 1592-1596 ◽  
Author(s):  
L. Stan Leung ◽  
Hui-Wen Yu

Leung, L. Stan and Hui-Wen Yu. Theta-frequency resonance in hippocampal CA1 neurons in vitro demonstrated by sinusoidal current injection. J. Neurophysiol. 79: 1592–1596, 1998. Sinusoidal currents of various frequencies were injected into hippocampal CA1 neurons in vitro, and the membrane potential responses were analyzed by cross power spectral analysis. Sinusoidal currents induced a maximal (resonant) response at a theta frequency (3–10 Hz) in slightly depolarized neurons. As predicted by linear systems theory, the resonant frequency was about the same as the natural (spontaneous) oscillation frequency. However, in some cases, the resonant frequency was higher than the spontaneous oscillation frequency, or resonance was found in the absence of spontaneous oscillations. The sharpness of the resonance ( Q), measured by the peak frequency divided by the half-peak power bandwidth, increased from a mean of 0.44 at rest to 0.83 during a mean depolarization of 6.5 mV. The phase of the driven oscillations changed most rapidly near the resonant frequency, and it shifted about 90° over the half-peak bandwidth of 8.4 Hz. Similar results were found using a sinusoidal function of slowly changing frequency as the input. Sinusoidal currents of peak-to-peak intensity of >100 pA may evoke nonlinear responses characterized by second and higher harmonics. The theta-frequency resonance in hippocampal neurons in vitro suggests that the same voltage-dependent phenomenon may be important in enhancing a theta-frequency response when hippocampal neurons are driven by medial septal or other inputs in vivo.


2004 ◽  
Vol 92 (1) ◽  
pp. 181-188 ◽  
Author(s):  
John E. Fox ◽  
Marom Bikson ◽  
John G. R. Jefferys

Population spikes vary in size during prolonged epileptic (“ictal”) discharges, indicating variations in neuronal synchronization. Here we investigate the role of changes in tissue electrical resistivity in this process. We used the rat hippocampal slice, low-Ca2+ model of epilepsy and measured changes in pyramidal layer extracellular resistance during the course of electrographic seizures. During each burst, population spike frequency decreased, whereas amplitude and spatial synchronization increased; after the main discharge, there could be brief secondary discharges that, in contrast with those in the primary discharge, started with high-amplitude population spikes. Mean resistivity increased from 1,231 Ω.cm immediately before the burst to a maximum of 1,507 Ω.cm during the burst. There was no significant increase during the first 0.5–1 s of the field burst, but resistance then increased (τ ∼ 5 s), reaching its peak at the end of the burst, and then decayed slowly (τ ∼ 10 s). In further experiments, we modulated the efficacy of electrical field effects by changing perfusate osmolarity. Reducing osmolarity by 40–70 mOsm increased preburst resistivity by 19%; it reduced minimum population spike frequency (×0.6–0.7) and increased both maximum population spike amplitude (×1.5–2.3) and spatial synchronization (×1.4–2.5, cross-correlation over 0.5 mm) during bursts. Increasing osmolarity by 20–40 mOsm had the opposite effects. These results suggest that, during each field burst, field effects between neurons gradually become more effective as cells swell, thereby modulating burst dynamics and facilitating the rapid synchronization of secondary discharges.


2020 ◽  
Vol 21 (6) ◽  
pp. 2010 ◽  
Author(s):  
Maria Rosaria Rizzo ◽  
Renata Fasano ◽  
Giuseppe Paolisso

Adiponectin (ADPN) is a plasma protein secreted by adipose tissue showing pleiotropic effects with anti-diabetic, anti-atherogenic, and anti-inflammatory properties. Initially, it was thought that the main role was only the metabolism control. Later, ADPN receptors were also found in the central nervous system (CNS). In fact, the receptors AdipoR1 and AdipoR2 are expressed in various areas of the brain, including the hypothalamus, hippocampus, and cortex. While AdipoR1 regulates insulin sensitivity through the activation of the AMP-activated protein kinase (AMPK) pathway, AdipoR2 stimulates the neural plasticity through the activation of the peroxisome proliferator-activated receptor alpha (PPARα) pathway that inhibits inflammation and oxidative stress. Overall, based on its central and peripheral actions, ADPN appears to have neuroprotective effects by reducing inflammatory markers, such as C-reactive protein (PCR), interleukin 6 (IL6), and Tumor Necrosis Factor a (TNFa). Conversely, high levels of inflammatory cascade factors appear to inhibit the production of ADPN, suggesting bidirectional modulation. In addition, ADPN appears to have insulin-sensitizing action. It is known that a reduction in insulin signaling is associated with cognitive impairment. Based on this, it is of great interest to investigate the mechanism of restoration of the insulin signal in the brain as an action of ADPN, because it is useful for testing a possible pharmacological treatment for the improvement of cognitive decline. Anyway, if ADPN regulates neuronal functioning and cognitive performances by the glycemic metabolic system remains poorly explored. Moreover, although the mechanism is still unclear, women compared to men have a doubled risk of developing cognitive decline. Several studies have also supported that during the menopausal transition, the estrogen reduction can adversely affect the brain, in particular, verbal memory and verbal fluency. During the postmenopausal period, in obese and insulin-resistant individuals, ADPN serum levels are significantly reduced. Our recent study has evaluated the relationship between plasma ADPN levels and cognitive performances in menopausal women. Thus, the aim of this review is to summarize both the mechanisms and the effects of ADPN in the central nervous system and the relationship between plasma ADPN levels and cognitive performances, also in menopausal women.


1996 ◽  
Vol 271 (4) ◽  
pp. C1269-C1277 ◽  
Author(s):  
K. S. Hsu ◽  
C. C. Huang ◽  
W. M. Kan ◽  
P. W. Gean

Whole cell voltage clamp recordings were used to investigate the effects of thromboxane A2 (TXA2) agonists on the voltage-dependent Ca2+ currents in rat hippocampal CA1 neurons. TXA2 agonists [1S-[1 alpha, 2 beta(5Z), 3 alpha(1E, 3S*)4 alpha ]]-7-[3-[3-hydroxy-4-(4'-iodophenoxy)-1-butenyl]-7-oxabicyclo [2,2,1]heptan-2-yl]-5-heptenoic acid (I-BOP) and U-46619, reversibly suppressed the whole cell Ca2+ currents in a concentration-dependent manner. The effect was blocked by specific TXA2 receptor antagonist, SQ-29548. I-BOP as well as U-46619 inhibited both omega-conotoxin GVIA (CgTx)-sensitive and nimodipine sensitive Ca2+ currents but had no effect on CgTx/nimodipine insensitive Ca2+ currents. The I-BOP and U-46619 inhibition of Ca2+ currents was blocked by internal dialysis of hippocampal neurons with specific protein kinase C (PKC) inhibitors, NPC-15437 and PKC inhibitor-(19-36). Pretreatment of hippocampal neurons with either 5 micrograms/ml pertussis toxin (PTX) or 5 micrograms/ml cholera toxin (CTX) did not significantly affect the suppression of the Ca2+ currents by I-BOP and U-46619. Dialyzing with 1 mM guanosine 5'-O-(3-thiotriphosphate) or 1 mM GDP significantly attenuated the I-BOP or U-46619 action. These results demonstrate that TXA2 agonists inhibit both CgTx- and nimodipine-sensitive Ca2+ currents but not CgTx/nimodipine-insensitive currents in rat hippocampal CA1 neurons via a PTX- and CTX-insensitive G protein-coupled activation of the PKC pathway.


Sign in / Sign up

Export Citation Format

Share Document