scholarly journals Calcium Balance and Mechanotransduction in Rat Cochlear Hair Cells

2010 ◽  
Vol 104 (1) ◽  
pp. 18-34 ◽  
Author(s):  
Maryline Beurg ◽  
Jong-Hoon Nam ◽  
Qingguo Chen ◽  
Robert Fettiplace

Auditory transduction occurs by opening of Ca2+-permeable mechanotransducer (MT) channels in hair cell stereociliary bundles. Ca2+ clearance from bundles was followed in rat outer hair cells (OHCs) using fast imaging of fluorescent indicators. Bundle deflection caused a rapid rise in Ca2+ that decayed after the stimulus, with a time constant of about 50 ms. The time constant was increased by blocking Ca2+ uptake into the subcuticular plate mitochondria or by inhibiting the hair bundle plasma membrane Ca2+ ATPase (PMCA) pump. Such manipulations raised intracellular Ca2+ and desensitized the MT channels. Measurement of the electrogenic PMCA pump current, which saturated at 18 pA with increasing Ca2+ loads, indicated a maximum Ca2+ extrusion rate of 3.7 fmol·s−1. The amplitude of the Ca2+ transient decreased in proportion to the Ca2+ concentration bathing the bundle and in artificial endolymph (160 mM K+, 20 μM Ca2+), Ca2+ carried 0.2% of the MT current. Nevertheless, MT currents in endolymph displayed fast adaptation with a submillisecond time constant. In endolymph, roughly 40% of the MT current was activated at rest when using 1 mM intracellular BAPTA compared with 12% with 1 mM EGTA, which enabled estimation of the in vivo Ca2+ load as 3 pA at rest. The results were reproduced by a model of hair bundle Ca2+ diffusion, showing that the measured PMCA pump density could handle Ca2+ loads incurred from resting and maximal MT currents in endolymph. The model also indicated the endogenous mobile buffer was equivalent to 1 mM BAPTA.

2007 ◽  
Vol 97 (4) ◽  
pp. 2930-2936 ◽  
Author(s):  
Stéphane F. Maison ◽  
Lisan L. Parker ◽  
Lucy Young ◽  
John P. Adelman ◽  
Jian Zuo ◽  
...  

Cochlear hair cells express SK2, a small-conductance Ca2+-activated K+ channel thought to act in concert with Ca2+-permeable nicotinic acetylcholine receptors (nAChRs) α9 and α10 in mediating suppressive effects of the olivocochlear efferent innervation. To probe the in vivo role of SK2 channels in hearing, we examined gene expression, cochlear function, efferent suppression, and noise vulnerability in mice overexpressing SK2 channels. Cochlear thresholds, as measured by auditory brain stem responses and otoacoustic emissions, were normal in overexpressers as was overall cochlear morphology and the size, number, and distribution of efferent terminals on outer hair cells. Cochlear expression levels of SK2 channels were elevated eightfold without striking changes in other SK channels or in the α9/α10 nAChRs. Shock-evoked efferent suppression of cochlear responses was significantly enhanced in overexpresser mice as seen previously in α9 overexpresser mice; however, in contrast to α9 overexpressers, SK2 overexpressers were not protected from acoustic injury. Results suggest that efferent-mediated cochlear protection is mediated by other downstream effects of ACh-mediated Ca2+ entry different from those involving SK2-mediated hyperpolarization and the associated reduction in outer hair cell electromotility.


2013 ◽  
Vol 109 (6) ◽  
pp. 1525-1534 ◽  
Author(s):  
Stéphane F. Maison ◽  
Sonja J. Pyott ◽  
Andrea L. Meredith ◽  
M. Charles Liberman

Cholinergic inhibition of cochlear hair cells via olivocochlear (OC)-efferent feedback is mediated by Ca2+ entry through α9-/α10-nicotinic receptors, but the nature of the K+ channels activated by this Ca2+ entry has been debated (Yoshida N, Hequembourg SJ, Atencio CA, Rosowski JJ, Liberman MC. J Neurophysiol 85: 84–88, 2001). A recent in vitro study (Wersinger E, McLean WJ, Fuchs PA, Pyott SJ. PLoS One 5: e13836, 2010) suggests that small-conductance (SK2) channels mediate cholinergic effects in the apical turn, whereas large-conductance (BK) channels mediate basal turn effects. Here, we measure, as a function of cochlear frequency, the magnitude of BK and SK2 expression in outer hair cells and the strength of in vivo OC suppression in BK+/+ mice vs. BK−/− lacking the obligatory α-subunit (Meredith AL, Thorneloe KS, Werner ME, Nelson MT, Aldrich RW. J Biol Chem 279: 36746–36752, 2004). Except at the extreme apical tip, we see immunostaining for both BK and SK2 in BK+/+. Correspondingly, at all testable frequencies (8–45 kHz), we see evidence for both SK2 and BK contributions to OC effects evoked by electrically stimulating the OC bundle: OC-mediated suppression was reduced, but not eliminated, at all frequencies in the BK−/− ears. The suppression remaining in BK nulls was blocked by strychnine, suggesting involvement of α9-/α10-cholinergic receptors, coupled to activation of the remaining SK2 channels.


2021 ◽  
Vol 22 (13) ◽  
pp. 6664
Author(s):  
Stella Chin-Shaw Tsai ◽  
Kuender D. Yang ◽  
Kuang-Hsi Chang ◽  
Frank Cheau-Feng Lin ◽  
Ruey-Hwang Chou ◽  
...  

Umbilical cord-derived mesenchymal stromal cells (UCMSCs) have potential applications in regenerative medicine. UCMSCs have been demonstrated to repair tissue damage in many inflammatory and degenerative diseases. We have previously shown that UCMSC exosomes reduce nerve injury-induced pain in rats. In this study, we characterized UCMSC exosomes using RNA sequencing and proteomic analyses and investigated their protective effects on cisplatin-induced hearing loss in mice. Two independent experiments were designed to investigate the protective effects on cisplatin-induced hearing loss in mice: (i) chronic intraperitoneal cisplatin administration (4 mg/kg) once per day for 5 consecutive days and intraperitoneal UCMSC exosome (1.2 μg/μL) injection at the same time point; and (ii) UCMSC exosome (1.2 μg/μL) injection through a round window niche 3 days after chronic cisplatin administration. Our data suggest that UCMSC exosomes exert protective effects in vivo. The post-traumatic administration of UCMSC exosomes significantly improved hearing loss and rescued the loss of cochlear hair cells in mice receiving chronic cisplatin injection. Neuropathological gene panel analyses further revealed the UCMSC exosomes treatment led to beneficial changes in the expression levels of many genes in the cochlear tissues of cisplatin-injected mice. In conclusion, UCMSC exosomes exerted protective effects in treating ototoxicity-induced hearing loss by promoting tissue remodeling and repair.


2013 ◽  
Vol 40 (2) ◽  
Author(s):  
Asti Kristianti ◽  
Teti Madiadipoera ◽  
Bogi Soeseno

Background: Chemotherapy is worldwide used nowadays, and its toxicity still remain a problemespecially toxicity to the ear (ototoxicity). Cisplatin (cis-diamminedichloroplatinum) is one of themost commonly used chemotherapy and highly potent in treating epithelial malignancies. Ototoxicitycaused by cisplatin is irreversible, progressive, bilateral, sensorineural hearing loss especially on highfrequency (4-8 KHz) accompanied by tinnitus. Purpose: To observe the cochlear outer hair cells damagein malignancies patients treated with cisplatin. Methods: This study is an observational analytic studywith prospective design to determine the influence of high dose cisplatin on cochlear outer hair cellsfunction. The research was carried out at the ENT-HNS Department, Hasan Sadikin General HospitalBandung, from November 2007 until June 2008. Audiometry, tympanometry, and distortion productotoacoustic emission (DPOAE) examinations were conducted before chemotherapy and DPOAE, andtimpanometry was again measured three days after first and second cycles of cisplatin administration. McNemar test was performed to calculate the effects of high-dose cisplatin to the cochlear outer haircells function. To compare pre and post-cisplatin on alteration of cochlear hair cells function, Wilcoxontest was used. Results: In this study 60 ears from 30 subjects that meet the inclusion criteria, consistedof 25 man (83.3%) and 5 women (16.7%). The prevalence of damaged cochlear outer hair cells were63% at first cycle and 70% at second cycle of cisplatin administration. The decline of cochlear outerhair cells function was significant (p<0.001). Conclusion: High-dose cisplatin decreases cochlear outerhair cells function in patients with malignant neoplasm. Abstrak : Latar belakang: Kemoterapi sekarang rutin digunakan secara klinis di seluruh dunia. Sejalan denganhal tersebut toksisitas kemoterapi, khususnya terhadap telinga saat ini menjadi perhatian. Sisplatin(cis-diamminedichloroplatinum) adalah salah satu obat kemoterapi yang paling banyak digunakandan paling manjur untuk terapi keganasan epitelial. Efek ototoksik sisplatin yaitu terjadi gangguandengar sensorineural yang irreversible, progresif, bilateral pada frekuensi tinggi (4-8 kHz), dan disertaidengan tinitus. Tujuan: Untuk menilai penurunan fungsi sel rambut luar koklea pada penderita tumorganas sesudah pemberian sisplatin dosis tinggi dengan menggunakan DPOAE. Metode: Studi analitikobservasional dengan rancangan prospektif di Bagian IK. THT-KL RS. Hasan Sadikin Bandung mulaibulan November 2007 sampai dengan Juni 2008. Pada penelitian ini dilakukan pemeriksaan audiometrinada murni, timpanometri, dan distortion product otoacoustic emission (DPOAE) prakemoterapi, kemudianDPOAE dan timpanometri diulang tiga hari sesudah siklus pertama dan kedua kemoterapi sisplatin. Datayang diperoleh diuji dengan uji McNemar dan uji Wilcoxon. Hasil: Dari penelitian didapat 60 telingadari 30 subjek penelitian yang memenuhi kriteria inklusi yang terdiri dari 25 laki-laki (83,3%) dan 5perempuan (16,7%). Insidens penurunan fungsi sel rambut luar koklea sebesar 63% (38 kasus) sesudahsiklus pertama dan 70% (42 kasus) sesudah siklus kedua. Hubungan penurunan fungsi sel rambut luarkoklea memberikan nilai yang sangat bermakna sejak pemberian siklus pertama (p<0,001). Kesimpulan:Pemberian sisplatin dosis tinggi pada penderita tumor ganas menyebabkan penurunan fungsi sel rambutluar koklea.Kata kunci: kemoterapi, sisplatin dosis tinggi, sel rambut luar koklea.


2021 ◽  
Author(s):  
Fumiaki Nin ◽  
Samuel Choi ◽  
Takeru Ota ◽  
Zhang Qi ◽  
Hiroshi Hibino

AbstractSound evokes sub-nanoscale vibration within the sensory epithelium. The epithelium contains not only immotile cells but also contractile outer hair cells (OHCs) that actively shrink and elongate synchronously with the sound. However, the in vivo motion of OHCs has remained undetermined. The aim of this work is to perform high-resolution and -accuracy vibrometry in live guinea pigs with an SC-introduced spectral-domain optical coherence tomography system (SD-OCT). In this study, to reveal the effective contribution of SC source in the recording of the low reflective materials with the short total acquisition time, we compare the performances of the SC-introduced SD-OCT (SCSD-OCT) to that of the conventional SD-OCT. As inanimate comparison objects, we record a mirror, a piezo actuator, and glass windows. For the measurements in biological materials, we use in/ex vivo guinea pig cochleae. Our study achieved the optimization of a SD-OCT system for high-resolution in vivo vibrometry in the cochlear sensory epithelium, termed the organ of Corti, in mammalian cochlea. By introducing a supercontinuum (SC) light source and reducing the total acquisition time, we improve the axial resolution and overcome the difficulty in recording the low reflective material in the presence of biological noise. The high power of the SC source enables the system to achieve a spatial resolution of 1.72 ± 0.00 μm on a mirror and reducing the total acquisition time contributes to the high spatial accuracy of sub-nanoscale vibrometry. Our findings reveal the vibrations at the apical/basal region of OHCs and the extracellular matrix, basilar membrane.


2019 ◽  
Vol 116 (41) ◽  
pp. 20743-20749 ◽  
Author(s):  
Maryline Beurg ◽  
Amanda Barlow ◽  
David N. Furness ◽  
Robert Fettiplace

Mechanoelectrical transducer (MET) currents were recorded from cochlear hair cells in mice with mutations of transmembrane channel-like protein TMC1 to study the effects on MET channel properties. We characterized a Tmc1 mouse with a single-amino-acid mutation (D569N), homologous to a dominant human deafness mutation. Measurements were made in both Tmc2 wild-type and Tmc2 knockout mice. By 30 d, Tmc1 pD569N heterozygote mice were profoundly deaf, and there was substantial loss of outer hair cells (OHCs). MET current in OHCs of Tmc1 pD569N mutants developed over the first neonatal week to attain a maximum amplitude one-third the size of that in Tmc1 wild-type mice, similar at apex and base, and lacking the tonotopic size gradient seen in wild type. The MET-channel Ca2+ permeability was reduced 3-fold in Tmc1 pD569N homozygotes, intermediate deficits being seen in heterozygotes. Reduced Ca2+ permeability resembled that of the Tmc1 pM412K Beethoven mutant, a previously studied semidominant mouse mutation. The MET channel unitary conductance, assayed by single-channel recordings and by measurements of current noise, was unaffected in mutant apical OHCs. We show that, in contrast to the Tmc1 M412K mutant, there was reduced expression of the TMC1 D569N channel at the transduction site assessed by immunolabeling, despite the persistence of tip links. The reduction in MET channel Ca2+ permeability seen in both mutants may be the proximate cause of hair-cell apoptosis, but changes in bundle shape and protein expression in Tmc1 D569N suggest another role for TMC1 apart from forming the channel.


Gene Therapy ◽  
2001 ◽  
Vol 8 (10) ◽  
pp. 789-794 ◽  
Author(s):  
A E Luebke ◽  
J D Steiger ◽  
B L Hodges ◽  
A Amalfitano

1995 ◽  
Vol 105 (1) ◽  
pp. 49-72 ◽  
Author(s):  
J J Art ◽  
Y C Wu ◽  
R Fettiplace

A major factor determining the electrical resonant frequency of turtle cochlear hair cells is the time course of the Ca-activated K current (Art, J. J., and R. Fettiplace. 1987. Journal of Physiology. 385:207-242). We have examined the notion that this time course is dictated by the K channel kinetics by recording single Ca-activated K channels in inside-out patches from isolated cells. A hair cell's resonant frequency was estimated from its known correlation with the dimensions of the hair bundle. All cells possess BK channels with a similar unit conductance of approximately 320 pS but with different mean open times of 0.25-12 ms. The time constant of relaxation of the average single-channel current at -50 mV in 4 microM Ca varied between cells from 0.4 to 13 ms and was correlated with the hair bundle height. The magnitude and voltage dependence of the time constant agree with the expected behavior of the macroscopic K(Ca) current, whose speed may thus be limited by the channel kinetics. All BK channels had similar sensitivities to Ca which produced half-maximal activation for a concentration of approximately 2 microM at +50 mV and 12 microM at -50 mV. We estimate from the voltage dependence of the whole-cell K(Ca) current that the BK channels may be fully activated at -35 mV by a rise in intracellular Ca to 50 microM. BK channels were occasionally observed to switch between slow and fast gating modes which raises the possibility that the range of kinetics of BK channels observed in different hair cells reflects a common channel protein whose kinetics are regulated by an unidentified intracellular factor. Membrane patches also contained 30 pS SK channels which were approximately 5 times more Ca-sensitive than BK channels at -50 mV. The SK channels may underlie the inhibitory synaptic potential produced in hair cells by efferent stimulation.


EMBO Reports ◽  
2017 ◽  
Vol 18 (11) ◽  
pp. 2015-2029 ◽  
Author(s):  
Christian Vogl ◽  
Tanvi Butola ◽  
Natja Haag ◽  
Torben J Hausrat ◽  
Michael G Leitner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document