scholarly journals Visual imagery and visual perception induce similar changes in occipital slow waves of sleep

2019 ◽  
Vol 121 (6) ◽  
pp. 2140-2152 ◽  
Author(s):  
Giulio Bernardi ◽  
Monica Betta ◽  
Jacinthe Cataldi ◽  
Andrea Leo ◽  
José Haba-Rubio ◽  
...  

Previous studies have shown that regional slow-wave activity (SWA) during non-rapid eye movement (NREM) sleep is modulated by prior experience and learning. Although this effect has been convincingly demonstrated for the sensorimotor domain, attempts to extend these findings to the visual system have provided mixed results. In this study we asked whether depriving subjects of external visual stimuli during daytime would lead to regional changes in slow waves during sleep and whether the degree of “internal visual stimulation” (spontaneous imagery) would influence such changes. In two 8-h sessions spaced 1 wk apart, 12 healthy volunteers either were blindfolded while listening to audiobooks or watched movies (control condition), after which their sleep was recorded with high-density EEG. We found that during NREM sleep, the number of small, local slow waves in the occipital cortex decreased after listening with blindfolding relative to movie watching in a way that depended on the degree of visual imagery subjects reported during blindfolding: subjects with low visual imagery showed a significant reduction of occipital sleep slow waves, whereas those who reported a high degree of visual imagery did not. We also found a positive relationship between the reliance on visual imagery during blindfolding and audiobook listening and the degree of correlation in sleep SWA between visual areas and language-related areas. These preliminary results demonstrate that short-term alterations in visual experience may trigger slow-wave changes in cortical visual areas. Furthermore, they suggest that plasticity-related EEG changes during sleep may reflect externally induced (“bottom up”) visual experiences, as well as internally generated (“top down”) processes.NEW & NOTEWORTHY Previous work has shown that slow-wave activity, a marker of sleep depth, is linked to neural plasticity in the sensorimotor cortex. We show that after short-term visual deprivation, subjects who reported little visual imagery had a reduced incidence of occipital slow waves. This effect was absent in subjects who reported strong spontaneous visual imagery. These findings suggest that visual imagery may “substitute” for visual perception and induce similar changes in non-rapid eye movement slow waves.

2021 ◽  
Vol 19 ◽  
Author(s):  
Stefani Altenhofen ◽  
Carla Denise Bonan

: Sleep is an evolutionarily conserved phenomenon, being an essential biological necessity for the learning process and memory consolidation. The brain displays two types of electrical activity during sleep: slow-wave activity or non-rapid eye movement (NREM) sleep and desynchronized brain wave activity or rapid eye movement (REM) sleep. There are many theories about “Why we need to sleep?” among them the synaptic homeostasis. This theory proposes that the role of sleep is the restoration of synaptic homeostasis, which is destabilized by synaptic strengthening triggered by learning during waking and by synaptogenesis during development. Sleep diminishes the plasticity load on neurons and other cells to normalize synaptic strength. In contrast, it re-establishes neuronal selectivity and the ability to learn, leading to the consolidation and integration of memories. The use of zebrafish as a tool to assess sleep and its disorders is growing, although sleep in this animal is not yet divided, for example, into REM and NREM states. However, zebrafish are known to have a regulated daytime circadian rhythm. Their sleep state is characterized by periods of inactivity accompanied by an increase in arousal threshold, preference for resting place, and the “rebound sleep effect” phenomenon, which causes an increased slow-wave activity after a forced waking period. In addition, drugs known to modulate sleep, such as melatonin, nootropics, and nicotine, have been tested in zebrafish. In this review, we discuss the use of zebrafish as a model to investigate sleep mechanisms and their regulation, demonstrating this species as a promising model for sleep research.


2019 ◽  
Author(s):  
Giulio Bernardi ◽  
Monica Betta ◽  
Jacinthe Cataldi ◽  
Andrea Leo ◽  
José Haba-Rubio ◽  
...  

AbstractPrevious studies have shown that regional slow wave activity (SWA) during NREM-sleep is modulated by prior experience and learning. While this effect has been convincingly demonstrated for the sensorimotor domain, attempts to extend these findings to the visual system have provided mixed results. Here we asked whether depriving subjects of external visual stimuli during daytime would lead to regional changes in slow waves during sleep and whether the degree of ‘internal visual stimulation’ (spontaneous imagery) would influence such changes. In two 8h-long sessions spaced one-week apart, twelve healthy volunteers either were blindfolded while listening to audiobooks or watched movies (control condition), after which their sleep was recorded with high-density EEG. We found that during NREM-sleep the number of small, local slow waves in the occipital cortex decreased after listening with blindfolding relative to movie watching in a way that depended on the degree of visual imagery subjects reported during blindfolding: subjects with low visual imagery showed a significant reduction of occipital sleep slow waves, while those who reported a high degree of visual imagery did not. We also found a positive relationship between the reliance on visual imagery during blindfolding and audiobook listening and the degree of correlation in sleep SWA between visual areas and language-related areas. These preliminary results demonstrate that short-term alterations in visual experience may trigger slow wave changes in cortical visual areas. Furthermore, they suggest that plasticity-related EEG changes during sleep may reflect externally induced (‘bottom-up’) visual experiences, as well as internally generated (‘top-down’) processes.


2017 ◽  
Vol 40 ◽  
pp. e115-e116
Author(s):  
M. Gorgoni ◽  
F. Reda ◽  
G. Lauri ◽  
I. Truglia ◽  
S. Cordone ◽  
...  

1991 ◽  
Vol 260 (2) ◽  
pp. C375-C382 ◽  
Author(s):  
J. M. Post ◽  
R. J. Stevens ◽  
K. M. Sanders ◽  
J. R. Hume

The effects of cromakalim (BRL 34915) and its optical isomer lemakalim (BRL 38227) were investigated in intact tissue and freshly dispersed circular muscle cells from canine proximal colon. Cromakalim and lemakalim hyperpolarized resting membrane potential, shortened the duration of slow waves by abolishing the plateau phase, and decreased the frequency of slow waves. Glyburide, a K channel blocker, prevented the effect of cromakalim on slow-wave activity. The mechanisms of these alterations in slow-wave activity were studied in isolated myocytes under voltage-clamp conditions. Cromakalim and lemakalim increased the magnitude of a time-independent outward K current, but cromakalim also reduced the peak outward K current. Glyburide inhibited lemakalim stimulation of the time-independent background current. Nisoldipine also reduced the peak outward current, and in the presence of nisoldipine, cromakalim did not affect the peak outward component of current. This suggested that cromakalim may block a Ca-dependent component of the outward current. Lemakalim did not affect the peak outward current. We tested whether the effects of cromakalim on outward current might be indirect due to an effect on inward Ca current. Cromakalim, but not lemakalim, was found to inhibit L-type Ca channels; however, glyburide did not alter cromakalim inhibition of inward Ca current. We conclude that the effects of cromakalim and lemakalim on membrane potential and slow waves in colonic smooth muscle appear to result primarily from stimulation of a time-independent background K conductance. The effects of these compounds on channel activity may explain the inhibitory effect of these compounds on contractile activity.


2014 ◽  
Vol 99 ◽  
pp. 154-161 ◽  
Author(s):  
Masako Tamaki ◽  
Ji Won Bang ◽  
Takeo Watanabe ◽  
Yuka Sasaki

2003 ◽  
Vol 285 (1) ◽  
pp. R99-R109 ◽  
Author(s):  
Hitoshi Yoshida ◽  
Takeshi Kubota ◽  
James M. Krueger

Sleep is regulated in part by the brain cytokine network, including tumor necrosis factor-α (TNF-α). TNF-α activates the transcription factor nuclear factor-κB, which in turn promotes transcription of many genes, including cyclooxygenase-2 (COX-2). COX-2 is in the brain and is an enzyme responsible for production of prostaglandin D2. The hypothesis that central COX-2 plays a role in the regulation of spontaneous and TNF-α-induced sleep was investigated. Three doses (0.5, 5, and 50 μg) of NS-398, a highly selective COX-2 inhibitor, were injected intracerebroventricularly. The highest dose decreased non-rapid eye movement sleep. The intermediate and highest doses decreased electroencephalographic slow-wave activity; the greatest reduction occurred after 50 μg of NS-398 during the first 3-h postinjection period. Rapid eye movement sleep and brain temperature were not altered by any dose of NS-398. Pretreatment of rabbits with 5 or 50 μg of NS-398 blocked the TNF-α-induced increases in non-rapid eye movement sleep, electroencephalographic slow-wave activity, and brain temperature. These data suggest that COX-2 is involved in the regulation of spontaneous and TNF-α-induced sleep.


1988 ◽  
Vol 255 (1) ◽  
pp. R27-R37 ◽  
Author(s):  
L. Trachsel ◽  
I. Tobler ◽  
A. A. Borbely

Sleep states and power spectra of the electroencephalogram were determined for consecutive 4-s epochs during 24 h in rats that had been implanted with electrodes under deep pentobarbital anesthesia. The power spectra in non-rapid eye movement sleep (NREMS) showed marked trends: low-frequency activity (0.75-7.0 Hz) declined progressively throughout the 12-h light period (L) and remained low during most of the 12-h dark period (D); high-frequency activity (10.25-25.0 Hz) rose toward the end of L and reached a maximum at the beginning of D. Within a single NREMS episode (duration 0.5-5.0 min), slow-wave activity (0.75-4.0 Hz) increased progressively to a plateau level. The rise was approximated by a saturating exponential function: although the asymptote level of the function showed a prominent 24-h rhythm, the time constant remained relatively stable (approximately 40 s). After short interruptions of NREMS episodes, slow-wave activity rose more steeply than after long interruptions. The marked 24-h variation of maximum slow-wave activity within NREMS episodes may reflect the level of a homeostatic sleep process.


SLEEP ◽  
2000 ◽  
Vol 23 (6) ◽  
pp. 1-6 ◽  
Author(s):  
Hélène Gaudreau ◽  
Steve Joncas ◽  
Antonio Zadra ◽  
Jacques Montplaisir

1994 ◽  
Vol 266 (3) ◽  
pp. G485-G496 ◽  
Author(s):  
L. W. Liu ◽  
L. Thuneberg ◽  
J. D. Huizinga

Incubation with 50 microM methylene blue (MB) and subsequent intense illumination resulted in abolition of the slow-wave activity in the submuscular interstitial cells of Cajal-circular muscle (ICC-CM) preparations of canine colon. This was often accompanied by a decrease in resting membrane potential. Repolarization of cells back to -70 mV did not restore the slow-wave activity, indicating that MB plus light directly interrupted the generation mechanism of slow waves. After MB incubation, a 2-min illumination consistently changed the mitochondrial conformation in ICCs from very condensed to orthodox, without inducing any obvious changes in smooth muscle cells. After 4- to 10-min illumination, ICCs became progressively more damaged with swollen and ruptured mitochondria, loss of cytoplasmic contrast and detail, loss of caveolae, and rupture of the plasma membrane. No damage was seen in smooth muscle cells or nerves. Gap junctional ultrastructure was preserved. Intense illumination without preincubation with MB left the slow waves and the ultrastructure of ICC-CM preparations unaffected. In CM preparations, without the submuscular ICC-smooth-muscle network, MB plus light induced no changes in electrical activity. We conclude that the correlation between selective damage to the submuscular ICCs (relative to smooth muscle) and selective loss of the slow-wave activity (relative to other electrical activity of the CM) strongly indicates that the ICCs play an essential role in the generation of slow waves.


Sign in / Sign up

Export Citation Format

Share Document