Carbenoxolone Inhibition of Voltage-Gated Ca Channels and Synaptic Transmission in the Retina

2004 ◽  
Vol 92 (2) ◽  
pp. 1252-1256 ◽  
Author(s):  
John P. Vessey ◽  
Melanie R. Lalonde ◽  
Hossein A. Mizan ◽  
Nicole C. Welch ◽  
Melanie E. M. Kelly ◽  
...  

We show that carbenoxolone, a drug used to block hemichannels in the retina to test the ephaptic model of horizontal cell inhibitory feedback, has strong inhibitory effects on voltage-gated Ca channels. Carbenoxolone (100 μM) reduced photoreceptor-to-horizontal cell synaptic transmission by 92%. Applied to patch-clamped, isolated cone photoreceptors, carbenoxolone inhibited Ca channels with an EC50 of 48 μM. At 100 μM, it reduced cone Ca channel current by 37%, reduced depolarization-evoked [Ca2+] signals in fluo-4 loaded retinal slices by 57% and inhibited Ca channels in Müller cells by 52%. A synaptic transfer model suggests that the degree of block of Ca channels accounts for the reduction in synaptic transmission. These results suggest broad inhibitory actions for carbenoxolone in the retina that must be considered when interpreting its effects on inhibitory feedback.

1996 ◽  
Vol 107 (5) ◽  
pp. 621-630 ◽  
Author(s):  
M F Wilkinson ◽  
S Barnes

High-voltage activated Ca channels in tiger salamander cone photoreceptors were studied with nystatin-permeabilized patch recordings in 3 mM Ca2+ and 10 mM Ba2+. The majority of Ca channel current was dihydropyridine sensitive, suggesting a preponderance of L-type Ca channels. However, voltage-dependent, incomplete block (maximum 60%) by nifedipine (0.1-100 microM) was evident in recordings of cones in tissue slice. In isolated cones, where the block was more potent, nifedipine (0.1-10 microM) or nisoldipine (0.5-5 microM) still failed to eliminate completely the Ca channel current. Nisoldipine was equally effective in blocking Ca channel current elicited in the presence of 10 mM Ba2+ (76% block) or 3 mM Ca2+ (88% block). 15% of the Ba2+ current was reversibly blocked by omega-conotoxin GVIA (1 microM). After enhancement with 1 microM Bay K 8644, omega-conotoxin GVIA blocked a greater proportion (22%) of Ba2+ current than in control. After achieving partial block of the Ba2+ current with nifedipine, concomitant application of omega-conotoxin GVIA produced no further block. The P-type Ca channel blocker, omega-agatoxin IVA (200 nM), had variable and insignificant effects. The current persisting in the presence of these blockers could be eliminated with Cd2+ (100 microM). These results indicate that photoreceptors express an L-type Ca channel having a distinguishing pharmacological profile similar to the alpha 1D Ca channel subtype. The presence of additional Ca channel subtypes, resistant to the widely used L-, N-, and P-type Ca channel blockers, cannot, however, be ruled out.


2000 ◽  
Vol 83 (1) ◽  
pp. 198-206 ◽  
Author(s):  
Kazuyuki Hirooka ◽  
Dmitri E. Kourennyi ◽  
Steven Barnes

We investigated the modulation of voltage-gated Ca channels by nitric oxide (NO) in isolated salamander retinal ganglion cells with the goals of determining the type of Ca channel affected and the signaling pathway by which modulation might occur. The NO donors, S-nitroso- N-acetyl-penicillamine (SNAP, 1 mM) and S-nitroso-cysteine (1 mM) induced modest increases in the amplitude of Ca channel currents recorded with ruptured- and permeabilized-patch techniques by causing a subpopulation of the Ca channels to activate at more negative potentials. The Ca channel antagonists ω-conotoxin GVIA and nisoldipine each reduced the Ca channel current partially, but only ω-conotoxin GVIA blocked the enhancement by SNAP. The SNAP-induced increase was blocked by oxadiazolo-quinoxaline (50 μM), suggesting that the NO generated by SNAP acts via a soluble guanylyl cyclase to raise levels of cGMP. The membrane-permeant cGMP analog 8-(4-chlorophenylthio) guanosine cyclic monophosphate also enhanced Ca channel currents and 8-bromo guanosine cyclic monophosphate (1 mM) occluded enhancement by SNAP. Consistent with these results, isobutyl-methyl-xanthine (IBMX, 10 μM), which can raise cGMP levels by inhibiting phosphodiesterase activity, increased Ca channel current by the same amount as SNAP and occluded subsequent enhancement by SNAP. Neither IBMX, the cGMP analogs, nor SNAP itself, led to activation of cGMP-gated channels. N-[2-(methylamino)ethyl]−5-isoquinoline-sulfonamide (2 μM), a broad spectrum inhibitor of protein kinase activity, KT5823 (1 μM), a specific protein kinase G (PKG) inhibitor, and a peptide inhibitor of PKG (200 μM) blocked SNAP enhancement, as did 5′-adenylylimidophosphate (1.5 mM), a nonhydrolyzable ATP analog that prevents protein phosphorylation. A peptide inhibitor of protein kinase A (10 nM) did not block the facilitory effects of SNAP. Okadaic acid (1 μM), a phosphatase inhibitor, had no effect by itself but increased the enhancement of Ca channel current by SNAP. These results suggest that NO modulates retinal ganglion cell N-type Ca channels by facilitating their voltage-dependent activation via a mechanism involving guanylyl cyclase/PKG-dependent phosphorylation. This effect could fine-tune neural integration in ganglion cells or play a role in ganglion cell disease by modulating intracellular calcium signaling.


1985 ◽  
Vol 86 (1) ◽  
pp. 1-30 ◽  
Author(s):  
B P Bean

Currents through Ca channels were recorded in single canine atrial cells using whole-cell recording with patch pipettes. Two components of Ca channel current could be distinguished. One ("Ifast") was present only if cells were held at negative potentials, was most prominent for relatively small depolarizations, and inactivated within tens of milliseconds. The other ("Islow"), corresponding to the Ca current previously reported in single cardiac cells, persisted even at relatively positive holding potentials, required stronger depolarizations for maximal current, and inactivated much more slowly. Both currents were unaffected by tetrodotoxin and both were reduced by Co. Ifast had the same size and kinetics when Ca was exchanged for Ba, while Islow was bigger and slower with Ba as the charge carrier. In isotonic BaCl2, fluctuation analysis showed that Ifast had a smaller single channel current than Islow. Islow was much more sensitive to block by nitrendipine than was Ifast; also, Islow, but not Ifast, was increased by the dihydropyridine drug BAY K8644. Isoproterenol produced large increases in Islow but had no effect on Ifast.


2006 ◽  
Vol 96 (1) ◽  
pp. 235-251 ◽  
Author(s):  
Andrei I. Ivanov ◽  
Ronald L. Calabrese

Inhibitory synaptic transmission between leech heart interneurons consist of two components: graded, gated by Ca2+ entering by low-threshold [low-voltage–activated (LVA)] Ca channels and spike-mediated, gated by Ca2+ entering by high-threshold [high-voltage–activated (HVA)] Ca channels. Changes in presynaptic background Ca2+ produced by Ca2+ influx through LVA channels modulate spike-mediated transmission, suggesting LVA channels have access to release sites controlled by HVA channels. Here we explore whether spike-mediated and graded transmission can use the same release sites and thus how Ca2+ influx by HVA and LVA Ca channels might interact to evoke neurotransmitter release. We recorded pre- and postsynaptic currents from voltage-clamped heart interneurons bathed in 0 mM Na+/5 mM Ca2+ saline. Using different stimulating paradigms and inorganic Ca channel blockers, we show that strong graded synaptic transmission can occlude high-threshold/spike-mediated synaptic transmission when evoked simultaneously. Suppression of LVA Ca currents diminishes graded release and concomitantly increases the ability of Ca2+ entering by HVA channels to release transmitter. Uncaging of Ca chelator corroborates that graded release occludes spike-mediated transmission. Our results indicate that both graded and spike-mediated synaptic transmission depend on the same readily releasable pool of synaptic vesicles. Thus Ca2+, entering cells through different Ca channels (LVA and HVA), acts to gate release of the same synaptic vesicles. The data argue for a closer location of HVA Ca channels to release sites than LVA Ca channels. The results are summarized in a conceptual model of a heart interneuron release site.


1995 ◽  
Vol 268 (1) ◽  
pp. C64-C69 ◽  
Author(s):  
T. Yamamoto

Whole cell patch-clamp techniques were applied to cultured smooth muscle cells isolated from the longitudinal layer of the late pregnant rat myometrium. Effects of estrogens on Ca channels were examined. Inhibitory effects of beta-estradiol (1 microM) on Ca channel currents were recognized. The inhibitory effects of beta-estradiol depended on holding potentials. beta-Estradiol shifted the steady-state inactivation curve in the negative direction by 7 mV at mid potential (n = 9). Diethylstilbestrol, a synthetic estrogen, gave similar effects on Ca channel currents at lower concentration (2 microM) to those of beta-estradiol. Strong inhibitory effects on Ca channel currents were obtained by higher concentration (20 microM). Diethylstilbestrol shifted the steady-state inactivation curve in the negative direction by 7 mV at mid potential (n = 5). The results indicate that estrogens influence the voltage dependency and the whole cell conductance of Ca channels of pregnant rat myometrial cells. The acute effect of estrogens may cause both electrical and mechanical depression of myometrium.


1984 ◽  
Vol 84 (5) ◽  
pp. 705-726 ◽  
Author(s):  
R S Kass ◽  
M C Sanguinetti

We have studied the influence of divalent cations on Ca channel current in the calf cardiac Purkinje fiber to determine whether this current inactivates by voltage- or Ca-mediated mechanisms, or by a combination of the two. We measured the reversal (or zero current) potential of the current when Ba, Sr, or Ca were the permeant divalent cations and determined that depletion of charge carrier does not account for time-dependent relaxation of Ca channel current in these preparations. Inactivation of Ca channel current persists when Ba or Sr replaces Ca as the permeant divalent cation, but the voltage dependence of the rate of inactivation is markedly changed. This effect cannot be explained by changes in external surface charge. Instead, we interpret the results as evidence that inactivation is both voltage and Ca dependent. Inactivation of Sr or Ba currents reflects a voltage-dependent process. When Ca is the divalent charge carrier, an additional effect is observed: the rate of inactivation is increased as Ca enters during depolarizing pulses, perhaps because of an additional Ca-dependent mechanism.


1992 ◽  
Vol 100 (1) ◽  
pp. 27-44 ◽  
Author(s):  
T Shimada ◽  
A P Somlyo

The effects of arachidonic acid (AA) and other long-chain fatty acids on voltage-dependent Ca channel current (ICa) were investigated, with the whole cell patch clamp method, in longitudinal smooth muscle cells of rabbit ileum. 10-30 microM AA caused a gradual depression of ICa. The inhibitory effect of AA was not prevented by indomethacin (10 microM) (an inhibitor of cyclooxygenase) or nordihydroguaiaretic acid (10 microM) (an inhibitor of lipoxygenase). 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine (H7; 25-50 microM) or staurosporine (2 microM) (inhibitors of protein kinase C) did not block the AA-induced inhibition of ICa, and application of phorbol ester (a protein kinase C activator) (phorbol-12,13-dibutyrate, 0.2 microM) did not mimic the AA action. Some other cis-unsaturated fatty acids (palmitoleic, linoleic, and oleic acids) were also found to depress ICa, while a trans-unsaturated fatty acid (linolelaidic acid) and saturated fatty acids (capric, lauric, myristic, and palmitic acids) had no inhibitory effects on ICa. Myristic acid consistently increased the amplitude of ICa at negative membrane potentials. The present results suggest the possible role of AA, and perhaps other fatty acids, in the physiological and/or pathological modulation of ICa in smooth muscle.


Sign in / Sign up

Export Citation Format

Share Document