Whole-hand water flow stimulation increases motor cortical excitability: a study of transcranial magnetic stimulation and movement-related cortical potentials

2015 ◽  
Vol 113 (3) ◽  
pp. 822-833 ◽  
Author(s):  
Daisuke Sato ◽  
Koya Yamashiro ◽  
Hideaki Onishi ◽  
Baba Yasuhiro ◽  
Yoshimitsu Shimoyama ◽  
...  

Previous studies examining the influence of afferent stimulation on corticospinal excitability have demonstrated that the intensity of afferent stimulation and the nature of the afferents targeted (cutaneous/proprioceptive) determine the effects. In this study, we assessed the effects of whole-hand water immersion (WI) and water flow stimulation (WF) on corticospinal excitability and intracortical circuits by measuring motor evoked potential (MEP) recruitment curves and conditioned MEP amplitudes. We further investigated whether whole-hand WF modulated movement-related cortical activity. Ten healthy subjects participated in three experiments, comprising the immersion of participants' right hands with (whole-hand WF) or without (whole-hand WI) water flow, and no immersion (control). We evaluated MEP recruitment curves produced by a single transcranial magnetic stimulation (TMS) pulse at increasing stimulus intensities, short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF) using the paired TMS technique before and after 15 min of intervention. Movement-related cortical potentials (MRCPs) were evaluated to examine primary motor cortex, supplementary motor area, and somatosensory cortex excitability upon movement before and after whole-hand WF. After whole-hand WF, the slope of the MEP recruitment curve significantly increased, whereas SICI decreased and ICF increased in the contralateral motor cortex. The amplitude of the Bereitschaftspotential, negative slope, and motor potential of MRCPs significantly increased after whole-hand WF. We demonstrated that whole-hand WF increased corticospinal excitability, decreased SICI, and increased ICF, although whole-hand WI did not change corticospinal excitability and intracortical circuits. Whole-hand WF modulated movement-related cortical activity, increasing motor cortex activation for the planning and execution of voluntary movements.

2018 ◽  
Vol 120 (4) ◽  
pp. 2011-2019 ◽  
Author(s):  
Adjmal M. E. Sarwary ◽  
Miles Wischnewski ◽  
Dennis J. L. G. Schutter ◽  
Luc P. J. Selen ◽  
W. Pieter Medendorp

Recent computational theories and behavioral observations suggest that motor learning is supported by multiple adaptation processes, operating on different timescales, but direct neural evidence is lacking. We tested this hypothesis by applying transcranial magnetic stimulation over motor cortex in 16 human subjects during a validated reach adaptation task. Motor-evoked potentials (MEPs) and cortical silent periods (CSPs) were recorded from the biceps brachii to assess modulations of corticospinal excitability as indices for corticospinal plasticity. Guided by a two-state adaptation model, we show that the MEP reflects an adaptive process that learns quickly but has poor retention, while the CSP correlates with a process that responds more slowly but retains information well. These results provide a physiological link between models of motor learning and distinct changes in corticospinal excitability. Our findings support the relationship between corticospinal gain modulations and the adaptive processes in motor learning. NEW & NOTEWORTHY Computational theories and behavioral observations suggest that motor learning is supported by multiple adaptation processes, but direct neural evidence is lacking. We tested this hypothesis by applying transcranial magnetic stimulation over human motor cortex during a reach adaptation task. Guided by a two-state adaptation model, we show that the motor-evoked potential reflects a process that adapts and decays quickly, whereas the cortical silent period reflects slow adaptation and decay.


2010 ◽  
Vol 109 (6) ◽  
pp. 1842-1851 ◽  
Author(s):  
Stuart Goodall ◽  
Emma Z. Ross ◽  
Lee M. Romer

Supraspinal fatigue, defined as an exercise-induced decline in force caused by suboptimal output from the motor cortex, accounts for over one-quarter of the force loss after fatiguing contractions of the knee extensors in normoxia. We tested the hypothesis that the relative contribution of supraspinal fatigue would be elevated with increasing severities of acute hypoxia. On separate days, 11 healthy men performed sets of intermittent, isometric, quadriceps contractions at 60% maximal voluntary contraction to task failure in normoxia (inspired O2 fraction/arterial O2 saturation = 0.21/98%), mild hypoxia (0.16/93%), moderate hypoxia (0.13/85%), and severe hypoxia (0.10/74%). Electrical stimulation of the femoral nerve was performed to assess neuromuscular transmission and contractile properties of muscle fibers. Transcranial magnetic stimulation was delivered to the motor cortex to quantify corticospinal excitability and voluntary activation. After 10 min of breathing the test gas, neuromuscular function and cortical voluntary activation prefatigue were unaffected in any condition. The fatigue protocol resulted in ∼30% declines in maximal voluntary contraction force in all conditions, despite differences in time-to-task failure (24.7 min in normoxia vs. 15.9 min in severe hypoxia, P < 0.05). Potentiated quadriceps twitch force declined in all conditions, but the decline in severe hypoxia was less than that in normoxia ( P < 0.05). Cortical voluntary activation also declined in all conditions, but the deficit in severe hypoxia exceeded that in normoxia ( P < 0.05). The additional central fatigue in severe hypoxia was not due to altered corticospinal excitability, as electromyographic responses to transcranial magnetic stimulation were unchanged. Results indicate that peripheral mechanisms of fatigue contribute relatively more to the reduction in force-generating capacity of the knee extensors following submaximal intermittent isometric contractions in normoxia and mild to moderate hypoxia, whereas supraspinal fatigue plays a greater role in severe hypoxia.


2009 ◽  
Vol 106 (5) ◽  
pp. 1593-1603 ◽  
Author(s):  
Gabrielle Todd ◽  
Nigel C. Rogasch ◽  
Stanley C. Flavel ◽  
Michael C. Ridding

Repetitive transcranial magnetic stimulation (rTMS) can induce short-term reorganization of human motor cortex. Here, we investigated the effect of rTMS during relaxation and weak voluntary muscle contraction on motor cortex excitability and hand function. Subjects ( n = 60) participated in one of four studies. Single transcranial magnetic stimuli were delivered over the motor area of the first dorsal interosseus for measurement of motor evoked potential (MEP) size before and after real or sham rTMS delivered at an intensity of 80% of active motor threshold. rTMS involved trains of stimuli applied at 6 Hz for 5 s and repeated every 30 s for 10 min. Resting MEP size was suppressed for 15 min after rTMS during relaxation. However, MEP suppression was abolished when additional brief voluntary contractions were performed before and after rTMS ( study 1). Resting MEP size was suppressed for 30 min after rTMS during weak voluntary contraction. MEP suppression was present even though voluntary contractions were performed before and after rTMS ( study 2). The MEP suppression most likely reflects a decrease in motor cortical excitability. Surprisingly, rTMS during voluntary contraction did not alter maximal finger tapping speed or performance on a grooved pegboard test, object grip and lift task ( study 3), and visuomotor tracking task ( study 4). These studies document the complex relationship between voluntary movement and rTMS-induced plasticity in motor cortex. This work has implications for the optimization of rTMS parameters for improved efficacy and potential therapeutic applications.


2012 ◽  
Vol 22 (1) ◽  
pp. 189-196 ◽  
Author(s):  
Alessia Nicotra ◽  
Nicolas K. K. King ◽  
Maria Catley ◽  
Nigel Mendoza ◽  
Alison H. McGregor ◽  
...  

Cephalalgia ◽  
2008 ◽  
Vol 28 (3) ◽  
pp. 203-208 ◽  
Author(s):  
AR Artemenko ◽  
AL Kurenkov ◽  
EG Filatova ◽  
SS Nikitin ◽  
H Kaube ◽  
...  

We studied the excitability of the visual and motor cortex in 36 patients with frequent migraine without aura (30 women, mean age 38.6 ± 10.0 years) before and after treatment with topiramate (100 mg/day) using transcranial magnetic stimulation. Treatment with topiramate resulted in reduction of both headache frequency (12.0 ± 1.3 to 5.8 ± 3.2 migraine days per month; P = 0.004) and cortical excitability: motor cortex thresholds increased on the right side from 43.8 ± 7.5% to 47.7 ± 9.2% ( P = 0.049) and on the left side from 43.4 ± 7.0% to 47.2 ± 9.6% ( P = 0.047), and phosphene thresholds increased from 58.9 ± 11.1% to 71.2 ± 11.2% ( P = 0.0001). Reduction of headache frequency correlated inversely with an increase of visual thresholds and did not correlate with motor thresholds. The effect of topiramate in migraine prevention is complex and can not be explained simply by inhibition of cortical excitability.


2004 ◽  
Vol 155 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Geoff Hammond ◽  
Deb Faulkner ◽  
Michelle Byrnes ◽  
Frank Mastaglia ◽  
Gary Thickbroom

2019 ◽  
Author(s):  
Manuel S. Seet ◽  
Evan J. Livesey ◽  
Justin A. Harris

AbstractResponse inhibition—the suppression of prepotent behaviours when they are inappropriate— has been thought to rely on executive control. Against this received wisdom, it has been argued that external cues repeatedly associated with response inhibition can come to trigger response inhibition automatically without top-down command. The current project endeavoured to provide evidence for associatively-mediated motor inhibition. We tested the hypothesis that stop-associated stimuli can, in a bottom-up fashion, directly activate inhibitory mechanisms in the motor cortex. Human subjects were first trained on a stop-signal task. Once trained, the subjects received transcranial magnetic stimulation applied over their primary motor cortex during passive observation of either the stop signal (i.e. without any need to stop a response) or an equally familiar control stimulus never associated with stopping. Analysis of motor-evoked potentials showed that corticospinal excitability was reduced during exposure to the stop signal, which likely involved stimulus-driven activation of intracortical GABAergic interneurons. This result offers evidence for the argument that, through associative learning, stop-associated stimuli can engage local inhibitory processes at the level of the motor cortex.


2009 ◽  
Vol 102 (2) ◽  
pp. 766-773 ◽  
Author(s):  
Patrick Ragert ◽  
Mickael Camus ◽  
Yves Vandermeeren ◽  
Michael A. Dimyan ◽  
Leonardo G. Cohen

The excitability of the human primary motor cortex (M1) as tested with transcranial magnetic stimulation (TMS) depends on its previous history of neural activity. Homeostatic plasticity might be one important physiological mechanism for the regulation of corticospinal excitability and synaptic plasticity. Although homeostatic plasticity has been demonstrated locally within M1, it is not known whether priming M1 could result in similar homeostatic effects in the homologous M1 of the opposite hemisphere. Here, we sought to determine whether down-regulating excitability (priming) in the right (R) M1 with 1-Hz repetitive transcranial magnetic stimulation (rTMS) changes the excitability-enhancing effect of intermittent theta burst stimulation (iTBS) applied over the homologous left (L) M1. Subjects were randomly allocated to one of four experimental groups in a sham-controlled parallel design with real or sham R M1 1-Hz TMS stimulation always preceding L M1 iTBS or sham by about 10 min. The primary outcome measure was corticospinal excitability in the L M1, as measured by recruitment curves (RCs). Secondary outcome measures included pinch force, simple reaction time, and tapping speed assessed in the right hand. The main finding of this study was that preconditioning R M1 with 1-Hz rTMS significantly decreased the excitability-enhancing effects of subsequent L M1 iTBS on RCs. Application of 1-Hz rTMS over R M1 alone and iTBS over L M1 alone resulted in increased RC in L M1 relative to sham interventions. The present findings are consistent with the hypothesis that homeostatic mechanisms operating across hemispheric boundaries contribute to regulate motor cortical function in the primary motor cortex.


Sign in / Sign up

Export Citation Format

Share Document