scholarly journals Associatively-mediated suppression of corticospinal excitability: A transcranial magnetic stimulation (TMS) study

2019 ◽  
Author(s):  
Manuel S. Seet ◽  
Evan J. Livesey ◽  
Justin A. Harris

AbstractResponse inhibition—the suppression of prepotent behaviours when they are inappropriate— has been thought to rely on executive control. Against this received wisdom, it has been argued that external cues repeatedly associated with response inhibition can come to trigger response inhibition automatically without top-down command. The current project endeavoured to provide evidence for associatively-mediated motor inhibition. We tested the hypothesis that stop-associated stimuli can, in a bottom-up fashion, directly activate inhibitory mechanisms in the motor cortex. Human subjects were first trained on a stop-signal task. Once trained, the subjects received transcranial magnetic stimulation applied over their primary motor cortex during passive observation of either the stop signal (i.e. without any need to stop a response) or an equally familiar control stimulus never associated with stopping. Analysis of motor-evoked potentials showed that corticospinal excitability was reduced during exposure to the stop signal, which likely involved stimulus-driven activation of intracortical GABAergic interneurons. This result offers evidence for the argument that, through associative learning, stop-associated stimuli can engage local inhibitory processes at the level of the motor cortex.

2012 ◽  
Vol 107 (1) ◽  
pp. 384-392 ◽  
Author(s):  
Ian Greenhouse ◽  
Caitlin L. Oldenkamp ◽  
Adam R. Aron

Much research has focused on how people stop initiated response tendencies when instructed by a signal. Stopping of this kind appears to have global effects on the motor system. For example, by delivering transcranial magnetic stimulation (TMS) over the leg area of the primary motor cortex, it is possible to detect suppression in the leg when the hand is being stopped (Badry R et al. Suppression of human cortico-motoneuronal excitability during the stop-signal task. Clin Neurophysiol 120: 1717–1723, 2009). Here, we asked if such “global suppression” can be observed proactively, i.e., when people anticipate they might have to stop. We used a conditional stop signal task, which allows the measurement of both an “anticipation phase” (i.e., where proactive control is applied) and a “stopping” phase. TMS was delivered during the anticipation phase ( experiment 1) and also during the stopping phase ( experiments 1 and 2) to measure leg excitability. During the anticipation phase, we did not observe leg suppression, but we did during the stopping phase, consistent with Badry et al. (2009) . Moreover, when we split the subject groups into those who slowed down behaviorally (i.e., exercised proactive control) and those who did not, we found that subjects who slowed did not show leg suppression when they stopped, whereas those who did not slow did show leg suppression when they stopped. These results suggest that if subjects prepare to stop, then they do so without global effects on the motor system. Thus, preparation allows them to stop more selectively.


2002 ◽  
Vol 95 (3) ◽  
pp. 699-705 ◽  
Author(s):  
Shikako Hayashi ◽  
Yoshiteru Hasegawa ◽  
Tatsuya Kasai

Studies of use-dependent changes in neural activation have recently focused on the primary motor cortex. To detect the excitability changes in the primary motor cortex after practice in human subjects, motor-evoked potentials by transcranial magnetic stimulation during motor imagery after just 10 sessions of simple index finger abduction were examined. The present results indicate that width of the output map and amplitudes of motor-evoked potential became progressively larger until practice ended. These flexible short-term modulations of human primary motor cortex seem important and could lead to structural changes in the intracortical networks as the skill becomes more learned and automatic, i.e., ‘adaptation’ as one of the neural mechanisms related to motor learning.


2013 ◽  
Vol 109 (1) ◽  
pp. 124-136 ◽  
Author(s):  
Jean-Jacques Orban de Xivry ◽  
Mohammad Ali Ahmadi-Pajouh ◽  
Michelle D. Harran ◽  
Yousef Salimpour ◽  
Reza Shadmehr

Both abrupt and gradually imposed perturbations produce adaptive changes in motor output, but the neural basis of adaptation may be distinct. Here, we measured the state of the primary motor cortex (M1) and the corticospinal network during adaptation by measuring motor-evoked potentials (MEPs) before reach onset using transcranial magnetic stimulation of M1. Subjects reached in a force field in a schedule in which the field was introduced either abruptly or gradually over many trials. In both groups, by end of the training, muscles that countered the perturbation in a given direction increased their activity during the reach (labeled as the on direction for each muscle). In the abrupt group, in the period before the reach toward the on direction, MEPs in these muscles also increased, suggesting a direction-specific increase in the excitability of the corticospinal network. However, in the gradual group, these MEP changes were missing. After training, there was a period of washout. The MEPs did not return to baseline. Rather, in the abrupt group, off direction MEPs increased to match on direction MEPs. Therefore, we observed changes in corticospinal excitability in the abrupt but not gradual condition. Abrupt training includes the repetition of motor commands, and repetition may be the key factor that produces this plasticity. Furthermore, washout did not return MEPs to baseline, suggesting that washout engaged a new network that masked but did not erase the effects of previous adaptation. Abrupt but not gradual training appears to induce changes in M1 and/or corticospinal networks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasuyuki Takamatsu ◽  
Satoko Koganemaru ◽  
Tatsunori Watanabe ◽  
Sumiya Shibata ◽  
Yoshihiro Yukawa ◽  
...  

AbstractTranscranial static magnetic stimulation (tSMS) has been focused as a new non-invasive brain stimulation, which can suppress the human cortical excitability just below the magnet. However, the non-regional effects of tSMS via brain network have been rarely studied so far. We investigated whether tSMS over the left primary motor cortex (M1) can facilitate the right M1 in healthy subjects, based on the hypothesis that the functional suppression of M1 can cause the paradoxical functional facilitation of the contralateral M1 via the reduction of interhemispheric inhibition (IHI) between the bilateral M1. This study was double-blind crossover trial. We measured the corticospinal excitability in both M1 and IHI from the left to right M1 by recording motor evoked potentials from first dorsal interosseous muscles using single-pulse and paired-pulse transcranial magnetic stimulation before and after the tSMS intervention for 30 min. We found that the corticospinal excitability of the left M1 decreased, while that of the right M1 increased after tSMS. Moreover, the evaluation of IHI revealed the reduced inhibition from the left to the right M1. Our findings provide new insights on the mechanistic understanding of neuromodulatory effects of tSMS in human.


2017 ◽  
Author(s):  
Matteo Fecchio ◽  
Andrea Pigorini ◽  
Angela Comanducci ◽  
Simone Sarasso ◽  
Silvia Casarotto ◽  
...  

ABSTRACTTranscranial magnetic stimulation (TMS) of the primary motor cortex (M1) can excite both cortico-cortical and cortico-spinal axons resulting in TMS-evoked potentials (TEPs) and motor-evoked potentials (MEPs), respectively. Despite this remarkable difference with other cortical areas, the influence of motor output and its amplitude on TEPs is largely unknown. Here we studied TEPs resulting from M1 stimulation and assessed whether their waveform and spectral features depend on the MEP amplitude. To this aim, we performed two separate experiments. In experiment 1, single-pulse TMS was applied at the same supra-threshold intensity on primary motor, prefrontal, premotor and parietal cortices and the corresponding TEPs were compared by means of local mean field power and time-frequency spectral analysis. In experiment 2 we stimulated M1 at resting motor threshold in order to elicit MEPs characterized by a wide range of amplitudes. TEPs computed from high-MEP and low-MEP trials were then compared using the same methods applied in experiment 1. In line with previous studies, TMS of M1 produced larger TEPs compared to other cortical stimulations. Notably, we found that only TEPs produced by M1 stimulation were accompanied by a late (∼300 ms after TMS) event-related desynchronization (ERD), whose magnitude was strongly dependent on the amplitude of MEPs. Overall, these results suggest that M1 produces peculiar responses to TMS possibly reflecting specific anatomo-functional properties, such as the re-entry of proprioceptive feedback associated with target muscle activation.


Author(s):  
Petyo Nikolov ◽  
Johanna V. Zimmermann ◽  
Shady S. Hassan ◽  
Philipp Albrecht ◽  
Alfons Schnitzler ◽  
...  

AbstractConditioning transcranial magnetic stimulation (TMS) with subthreshold conditioning stimulus followed by supra-threshold test stimulus at inter-stimulus intervals (ISI) of 1–5 ms results in inhibition (SICI), while ISI at 10–15 ms results in facilitation (ICF). One concerning issue, applying ICF/SICI protocols on patients is the substantial protocol variability. Here, we hypothesized that increasing the number of CS could result in more robust ICF/SICI protocols. Twenty healthy subjects participated in the study. Motor-evoked potentials (MEP) were obtained from conditioning TMS with a varying number of conditioning stimuli in 3, 4, 10, and 15 ms ISI over the primary motor cortex. MEP amplitudes were then compared to examine excitability. TMS with 3, 5, and 7 conditioning stimuli but not with one conditioning stimulus induced ICF. Moreover, 10 ms ISI produced stronger ICF than 15 ms ISI. Significant SICI was only induced with one conditioning stimulus. Besides, 3 ms ISI resulted in stronger SICI than 4 ms ISI. Only a train of conditioning stimuli induced stable ICF and may be more advantageous than the classical paired pulse ICF paradigm.


2009 ◽  
Vol 102 (2) ◽  
pp. 766-773 ◽  
Author(s):  
Patrick Ragert ◽  
Mickael Camus ◽  
Yves Vandermeeren ◽  
Michael A. Dimyan ◽  
Leonardo G. Cohen

The excitability of the human primary motor cortex (M1) as tested with transcranial magnetic stimulation (TMS) depends on its previous history of neural activity. Homeostatic plasticity might be one important physiological mechanism for the regulation of corticospinal excitability and synaptic plasticity. Although homeostatic plasticity has been demonstrated locally within M1, it is not known whether priming M1 could result in similar homeostatic effects in the homologous M1 of the opposite hemisphere. Here, we sought to determine whether down-regulating excitability (priming) in the right (R) M1 with 1-Hz repetitive transcranial magnetic stimulation (rTMS) changes the excitability-enhancing effect of intermittent theta burst stimulation (iTBS) applied over the homologous left (L) M1. Subjects were randomly allocated to one of four experimental groups in a sham-controlled parallel design with real or sham R M1 1-Hz TMS stimulation always preceding L M1 iTBS or sham by about 10 min. The primary outcome measure was corticospinal excitability in the L M1, as measured by recruitment curves (RCs). Secondary outcome measures included pinch force, simple reaction time, and tapping speed assessed in the right hand. The main finding of this study was that preconditioning R M1 with 1-Hz rTMS significantly decreased the excitability-enhancing effects of subsequent L M1 iTBS on RCs. Application of 1-Hz rTMS over R M1 alone and iTBS over L M1 alone resulted in increased RC in L M1 relative to sham interventions. The present findings are consistent with the hypothesis that homeostatic mechanisms operating across hemispheric boundaries contribute to regulate motor cortical function in the primary motor cortex.


2021 ◽  
Vol 12 (1) ◽  
pp. 61
Author(s):  
Pramudika Nirmani Kariyawasam ◽  
Shinya Suzuki ◽  
Susumu Yoshida

Bilateral motor training is a useful method for modifying corticospinal excitability. The effects of bilateral movement that are caused by artificial stimulation on corticospinal excitability have not been reported. We compared motor-evoked potentials (MEPs) of the primary motor cortex (M1) after conventional bilateral motor training and artificial bilateral movements generated by electromyogram activity of abductor pollicis brevis (APB) muscle-triggered peripheral nerve stimulation (c-MNS) and transcranial magnetic stimulation of the ipsilateral M1 (i-TMS). A total of three protocols with different interventions—bilateral finger training, APB-triggered c-MNS, and APB-triggered i-TMS—were administered to 12 healthy participants. Each protocol consisted of 360 trials of 30 min for each trial. MEPs that were induced by single-pulse TMS, short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF) that were induced by paired-pulse TMS were assessed as outcome measures at baseline and at 0, 20, 40, and 60 min after intervention. MEP amplitude significantly increased up to 40 min post-intervention in all protocols compared to that at the baseline, although there were some differences in the changing pattern of ICF and SICI in each protocol. These findings suggest that artificial bilateral movement has the potential to increase the ipsilateral cortical excitability of the moving finger.


Sign in / Sign up

Export Citation Format

Share Document