Effects of Topiramate on Migraine Frequency and Cortical Excitability in Patients with Frequent Migraine

Cephalalgia ◽  
2008 ◽  
Vol 28 (3) ◽  
pp. 203-208 ◽  
Author(s):  
AR Artemenko ◽  
AL Kurenkov ◽  
EG Filatova ◽  
SS Nikitin ◽  
H Kaube ◽  
...  

We studied the excitability of the visual and motor cortex in 36 patients with frequent migraine without aura (30 women, mean age 38.6 ± 10.0 years) before and after treatment with topiramate (100 mg/day) using transcranial magnetic stimulation. Treatment with topiramate resulted in reduction of both headache frequency (12.0 ± 1.3 to 5.8 ± 3.2 migraine days per month; P = 0.004) and cortical excitability: motor cortex thresholds increased on the right side from 43.8 ± 7.5% to 47.7 ± 9.2% ( P = 0.049) and on the left side from 43.4 ± 7.0% to 47.2 ± 9.6% ( P = 0.047), and phosphene thresholds increased from 58.9 ± 11.1% to 71.2 ± 11.2% ( P = 0.0001). Reduction of headache frequency correlated inversely with an increase of visual thresholds and did not correlate with motor thresholds. The effect of topiramate in migraine prevention is complex and can not be explained simply by inhibition of cortical excitability.

2005 ◽  
Vol 93 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Jen-Tse Chen ◽  
Yung-Yang Lin ◽  
Din-E Shan ◽  
Zin-An Wu ◽  
Mark Hallett ◽  
...  

Transcranial magnetic stimulation (TMS) of the motor cortex can interrupt voluntary contralateral rhythmic limb movements. Using the method of “resetting index” (RI), our study investigated the TMS effect on different types of bimanual movements. Six normal subjects participated. For unimanual movement, each subject tapped either the right or left index finger at a comfortable rate. For bimanual movement, index fingers of both hands tapped in the same (in-phase) direction or in the opposite (antiphase) direction. TMS was applied to each hemisphere separately at various intensities from 0.5 to 1.5 times motor threshold (MT). TMS interruption of rhythm was quantified by RI. For the unimanual movements, TMS disrupted both contralateral and ipsilateral rhythmic hand movements, although the effect was much less in the ipsilateral hand. For the bimanual in-phase task, TMS could simultaneously reset the rhythmic movements of both hands, but the effect on the contralateral hand was less and the effect on the ipsilateral hand was more compared with the unimanual tasks. Similar effects were seen from right and left hemisphere stimulation. TMS had little effect on the bimanual antiphase task. The equal effect of right and left hemisphere stimulation indicates that neither motor cortex is dominant for simple bimanual in-phase movement. The smaller influence of contralateral stimulation and the greater effect of ipsilateral stimulation during bimanual in-phase movement compared with unimanual movement suggest hemispheric coupling. The antiphase movements were resistant to TMS disruption, and this suggests that control of rhythm differs in the 2 tasks. TMS produced a transient asynchrony of movements on the 2 sides, indicating that both motor cortices might be downstream of the clocking command or that the clocking is a consequence of the 2 hemispheres communicating equally with each other.


2021 ◽  
Vol 11 (4) ◽  
pp. 432
Author(s):  
Fiorenzo Moscatelli ◽  
Antonietta Messina ◽  
Anna Valenzano ◽  
Vincenzo Monda ◽  
Monica Salerno ◽  
...  

Transcranial magnetic stimulation, since its introduction in 1985, has brought important innovations to the study of cortical excitability as it is a non-invasive method and, therefore, can be used both in healthy and sick subjects. Since the introduction of this cortical stimulation technique, it has been possible to deepen the neurophysiological aspects of motor activation and control. In this narrative review, we want to provide a brief overview regarding TMS as a tool to investigate changes in cortex excitability in athletes and highlight how this tool can be used to investigate the acute and chronic responses of the motor cortex in sport science. The parameters that could be used for the evaluation of cortical excitability and the relative relationship with motor coordination and muscle fatigue, will be also analyzed. Repetitive physical training is generally considered as a principal strategy for acquiring a motor skill, and this process can elicit cortical motor representational changes referred to as use-dependent plasticity. In training settings, physical practice combined with the observation of target movements can enhance cortical excitability and facilitate the process of learning. The data to date suggest that TMS is a valid technique to investigate the changes in motor cortex excitability in trained and untrained subjects. Recently, interest in the possible ergogenic effect of non-invasive brain stimulation in sport is growing and therefore in the future it could be useful to conduct new experiments to evaluate the impact on learning and motor performance of these techniques.


2015 ◽  
Vol 113 (3) ◽  
pp. 822-833 ◽  
Author(s):  
Daisuke Sato ◽  
Koya Yamashiro ◽  
Hideaki Onishi ◽  
Baba Yasuhiro ◽  
Yoshimitsu Shimoyama ◽  
...  

Previous studies examining the influence of afferent stimulation on corticospinal excitability have demonstrated that the intensity of afferent stimulation and the nature of the afferents targeted (cutaneous/proprioceptive) determine the effects. In this study, we assessed the effects of whole-hand water immersion (WI) and water flow stimulation (WF) on corticospinal excitability and intracortical circuits by measuring motor evoked potential (MEP) recruitment curves and conditioned MEP amplitudes. We further investigated whether whole-hand WF modulated movement-related cortical activity. Ten healthy subjects participated in three experiments, comprising the immersion of participants' right hands with (whole-hand WF) or without (whole-hand WI) water flow, and no immersion (control). We evaluated MEP recruitment curves produced by a single transcranial magnetic stimulation (TMS) pulse at increasing stimulus intensities, short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF) using the paired TMS technique before and after 15 min of intervention. Movement-related cortical potentials (MRCPs) were evaluated to examine primary motor cortex, supplementary motor area, and somatosensory cortex excitability upon movement before and after whole-hand WF. After whole-hand WF, the slope of the MEP recruitment curve significantly increased, whereas SICI decreased and ICF increased in the contralateral motor cortex. The amplitude of the Bereitschaftspotential, negative slope, and motor potential of MRCPs significantly increased after whole-hand WF. We demonstrated that whole-hand WF increased corticospinal excitability, decreased SICI, and increased ICF, although whole-hand WI did not change corticospinal excitability and intracortical circuits. Whole-hand WF modulated movement-related cortical activity, increasing motor cortex activation for the planning and execution of voluntary movements.


2019 ◽  
Vol 45 (4) ◽  
pp. 694-702 ◽  
Author(s):  
Nicholas L. Balderston ◽  
Emily M. Beydler ◽  
Camille Roberts ◽  
Zhi-De Deng ◽  
Thomas Radman ◽  
...  

AbstractMuch of the mechanistic research on anxiety focuses on subcortical structures such as the amygdala; however, less is known about the distributed cortical circuit that also contributes to anxiety expression. One way to learn about this circuit is to probe candidate regions using transcranial magnetic stimulation (TMS). In this study, we tested the involvement of the dorsolateral prefrontal cortex (dlPFC), in anxiety expression using 10 Hz repetitive TMS (rTMS). In a within-subject, crossover experiment, the study measured anxiety in healthy subjects before and after a session of 10 Hz rTMS to the right dorsolateral prefrontal cortex (dlPFC). It used threat of predictable and unpredictable shock to induce anxiety and anxiety potentiated startle to assess anxiety. Counter to our hypotheses, results showed an increase in anxiety-potentiated startle following active but not sham rTMS. These results suggest a mechanistic link between right dlPFC activity and physiological anxiety expression. This result supports current models of prefrontal asymmetry in affect, and lays the groundwork for further exploration into the cortical mechanisms mediating anxiety, which may lead to novel anxiety treatments.


2009 ◽  
Vol 106 (17) ◽  
pp. 7197-7202 ◽  
Author(s):  
Claudia D. Vargas ◽  
Antoine Aballéa ◽  
Érika C. Rodrigues ◽  
Karen T. Reilly ◽  
Catherine Mercier ◽  
...  

The human primary motor cortex (M1) undergoes considerable reorganization in response to traumatic upper limb amputation. The representations of the preserved arm muscles expand, invading portions of M1 previously dedicated to the hand, suggesting that former hand neurons are reassigned to the control of remaining proximal upper limb muscles. Hand allograft offers a unique opportunity to study the reversibility of such long-term cortical changes. We used transcranial magnetic stimulation in patient LB, who underwent bilateral hand transplantation 3 years after a traumatic amputation, to longitudinally track both the emergence of intrinsic (from the donor) hand muscles in M1 as well as changes in the representation of stump (upper arm and forearm) muscles. The same muscles were also mapped in patient CD, the first bilateral hand allograft recipient. Newly transplanted intrinsic muscles acquired a cortical representation in LB's M1 at 10 months postgraft for the left hand and at 26 months for the right hand. The appearance of a cortical representation of transplanted hand muscles in M1 coincided with the shrinkage of stump muscle representations for the left but not for the right side. In patient CD, transcranial magnetic stimulation performed at 51 months postgraft revealed a complete set of intrinsic hand-muscle representations for the left but not the right hand. Our findings show that newly transplanted muscles can be recognized and integrated into the patient's motor cortex.


2009 ◽  
Vol 106 (5) ◽  
pp. 1593-1603 ◽  
Author(s):  
Gabrielle Todd ◽  
Nigel C. Rogasch ◽  
Stanley C. Flavel ◽  
Michael C. Ridding

Repetitive transcranial magnetic stimulation (rTMS) can induce short-term reorganization of human motor cortex. Here, we investigated the effect of rTMS during relaxation and weak voluntary muscle contraction on motor cortex excitability and hand function. Subjects ( n = 60) participated in one of four studies. Single transcranial magnetic stimuli were delivered over the motor area of the first dorsal interosseus for measurement of motor evoked potential (MEP) size before and after real or sham rTMS delivered at an intensity of 80% of active motor threshold. rTMS involved trains of stimuli applied at 6 Hz for 5 s and repeated every 30 s for 10 min. Resting MEP size was suppressed for 15 min after rTMS during relaxation. However, MEP suppression was abolished when additional brief voluntary contractions were performed before and after rTMS ( study 1). Resting MEP size was suppressed for 30 min after rTMS during weak voluntary contraction. MEP suppression was present even though voluntary contractions were performed before and after rTMS ( study 2). The MEP suppression most likely reflects a decrease in motor cortical excitability. Surprisingly, rTMS during voluntary contraction did not alter maximal finger tapping speed or performance on a grooved pegboard test, object grip and lift task ( study 3), and visuomotor tracking task ( study 4). These studies document the complex relationship between voluntary movement and rTMS-induced plasticity in motor cortex. This work has implications for the optimization of rTMS parameters for improved efficacy and potential therapeutic applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasuyuki Takamatsu ◽  
Satoko Koganemaru ◽  
Tatsunori Watanabe ◽  
Sumiya Shibata ◽  
Yoshihiro Yukawa ◽  
...  

AbstractTranscranial static magnetic stimulation (tSMS) has been focused as a new non-invasive brain stimulation, which can suppress the human cortical excitability just below the magnet. However, the non-regional effects of tSMS via brain network have been rarely studied so far. We investigated whether tSMS over the left primary motor cortex (M1) can facilitate the right M1 in healthy subjects, based on the hypothesis that the functional suppression of M1 can cause the paradoxical functional facilitation of the contralateral M1 via the reduction of interhemispheric inhibition (IHI) between the bilateral M1. This study was double-blind crossover trial. We measured the corticospinal excitability in both M1 and IHI from the left to right M1 by recording motor evoked potentials from first dorsal interosseous muscles using single-pulse and paired-pulse transcranial magnetic stimulation before and after the tSMS intervention for 30 min. We found that the corticospinal excitability of the left M1 decreased, while that of the right M1 increased after tSMS. Moreover, the evaluation of IHI revealed the reduced inhibition from the left to the right M1. Our findings provide new insights on the mechanistic understanding of neuromodulatory effects of tSMS in human.


2019 ◽  
Author(s):  
Cécilia Neige ◽  
Dylan Rannaud Monany ◽  
Cathy M. Stinear ◽  
Winston D. Byblow ◽  
Charalambos Papaxanthis ◽  
...  

AbstractMotor imagery (MI) is the mental simulation of an action without any apparent muscular contraction. By means of transcranial magnetic stimulation, few studies revealed a decrease of short-interval intracortical inhibition (SICI) within the primary motor cortex. However, this decrease is ambiguous, as one would expect greater inhibition during MI to prevent overt motor output. The current study investigated the extent of SICI modulation during MI through a methodological and a conceptual reconsideration of i) the importance of parameters to assess SICI (Exp.1) and ii) the inhibitory process within the primary motor cortex as an inherent feature of MI (Exp.2). Participants performed two tasks: 1) rest and 2) imagery of isometric abduction of the right index finger. Using transcranial magnetic stimulation, motor evoked potentials were elicited in the right first dorsal interosseous muscle. An adaptive threshold-hunting paradigm was used, where the stimulus intensity required to maintain a fixed motor evoked potential amplitude was quantified. To test SICI, we conditioned the test stimulus with a conditioning stimulus (CS) of different intensities. Results revealed an Intensity by Task interaction showing that SICI decreased during MI as compared to rest only for the higher CS intensity (Exp.1). At the lowest CS intensities, a Task main effect revealed that SICI increased during MI (Exp.2). SICI modulation during MI depends critically on the CS intensity. By optimising CS intensity, we have shown that SICI circuits may increase during MI, revealing a potential mechanism to prevent the production of a movement while the motor system is activated.HighlightsExcitatory and inhibitory neural processes interact during motor imagery, as the motor regions are activated but no movement is produced.The current study investigated the extent of short interval intracortical inhibition modulation (SICI) during motor imagery.When using optimal settings, SICI increased during motor imagery, likely to prevent the production of an overt movement.


2019 ◽  
Author(s):  
Mana Biabani ◽  
Alex Fornito ◽  
James P. Coxon ◽  
Ben D. Fulcher ◽  
Nigel C. Rogasch

AbstractTranscranial magnetic stimulation (TMS) is a powerful tool to investigate cortical circuits. Changes in cortical excitability following TMS are typically assessed by measuring changes in either conditioned motor-evoked potentials (MEPs) following paired-pulse TMS over motor cortex or evoked potentials measured with electroencephalography following single-pulse TMS (TEPs). However, it is unclear whether these two measures of cortical excitability index the same cortical response. Twenty-four healthy participants received local and interhemispheric paired-pulse TMS over motor cortex with eight inter-pulse intervals, suband suprathreshold conditioning intensities, and two different pulse waveforms, while MEPs were recorded from a hand muscle. TEPs were also recorded in response to single-pulse TMS using the conditioning pulse alone. The relationships between TEPs and conditioned-MEPs were evaluated using metrics sensitive to both their magnitude at each timepoint and their overall shape across time. The impacts of undesired sensory potentials resulting from TMS pulse and muscle contractions were also assessed on both measures. Both conditioned-MEPs and TEPs were sensitive to re-afferent somatosensory activity following motor-evoked responses, but over different post-stimulus timepoints. Moreover, the amplitude of low-frequency oscillations in TEPs was strongly correlated with the sensory potentials, whereas early and local high-frequency responses showed minimal relationships. Accordingly, conditioned-MEPs did not correlate with TEPs in the time domain but showed high shape similarity with the amplitude of high-frequency oscillations in TEPs. Therefore, despite the effects of sensory confounds, the TEP and MEP measures share a response component, suggesting that they index a similar cortical response and perhaps the same neuronal populations.


Sign in / Sign up

Export Citation Format

Share Document