scholarly journals Recruitment Order of Motor Units in Human Vastus Lateralis Muscle Is Maintained During Fatiguing Contractions

2003 ◽  
Vol 90 (5) ◽  
pp. 2919-2927 ◽  
Author(s):  
Alexander Adam ◽  
Carlo J. De Luca

Motor-unit firing patterns were studied in the vastus lateralis muscle of five healthy young men [21.4 ± 0.9 (SD) yr] during a series of isometric knee extensions performed to exhaustion. Each contraction was held at a constant torque level, set to 20% of the maximal voluntary contraction at the beginning of the experiment. Electromyographic signals, recorded via a quadrifilar fine wire electrode, were processed with the precision decomposition technique to identify the firing times of individual motor units. In repeat experiments, whole-muscle mechanical properties were measured during the fatigue protocol using electrical stimulation. The main findings were a monotonic decrease in the recruitment threshold of all motor units and the progressive recruitment of new units, all without a change of the recruitment order. Motor units from the same subject showed a similar time course of threshold decline, but this decline varied among subjects (mean threshold decrease ranged from 23 to 73%). The mean threshold decline was linearly correlated ( R2 ≥ 0.96) with a decline in the elicited peak tetanic torque. In summary, the maintenance of recruitment order during fatigue strongly supports the notion that the observed common recruitment adaptations were a direct consequence of an increased excitatory drive to the motor unit pool. It is suggested that the increased central drive was necessary to compensate for the loss in force output from motor units whose muscle fibers were actively contracting. We therefore conclude that the control scheme of motor-unit recruitment remains invariant during fatigue at least in relatively large muscles performing submaximal isometric contractions.

2005 ◽  
Vol 99 (1) ◽  
pp. 268-280 ◽  
Author(s):  
Alexander Adam ◽  
Carlo J. De Luca

We investigated the firing rate of motor units in the vastus lateralis muscle in five healthy young men (mean = 21.4 yr, SD = 0.9) during a sequence of isometric constant-torque contractions repeated to exhaustion. The contractions were sustained at 20% of the maximal voluntary level, measured at the beginning of the test sequence. Electromyographic (EMG) signals were recorded via quadrifilar fine-wire electrodes and subsequently decomposed into their constituent motor unit action potentials to obtain the motor unit firing times. In addition, we measured the whole muscle mechanical properties during the fatigue task using electrical stimulation. The firing rate of motor units first decreased within the first 10–20% of the endurance time of the contractions and then increased. The firing rate increase was accompanied by recruitment of additional motor units as the force output remained constant. The elicited twitch and tetanic torque responses first increased and then decreased. The two processes modulated in a complementary fashion at the same time. Our data suggest that, when the vastus lateralis muscle is activated to maintain a constant torque output, its motoneuron pool receives a net excitatory drive that first decreases to compensate for the short-lived potentiation of the muscle force twitch and then increases to compensate for the diminution of the force twitch. The underlying inverse relationship between the firing rate and the recruitment threshold that has been reported for nonfatigued contractions is maintained. We, therefore, conclude that the central nervous system control of vastus lateralis motor units remains invariant during fatigue in submaximal isometric isotonic contractions.


1995 ◽  
Vol 79 (6) ◽  
pp. 2043-2049 ◽  
Author(s):  
E. Saugen ◽  
N. K. Vollestad

The rate of temperature rise (dT/dt) in the vastus lateralis muscle of seven subjects was measured at four to five locations in each muscle during voluntary isometric contractions ranging from 10 to 90% of maximal voluntary contraction (MVC) force. dT/dt increased from 3.1 +/- 1.1 mK/s at 10% MVC to 14.5 +/- 1.3 mK/s at 90% MVC. In the typical subject, the increase in dT/dt with force was markedly higher between 30 and 70% MVC than in the upper and lower force ranges. The estimated ratio between heat rate in active muscle and force was six times higher at 10% MVC than at 90% MVC, indicating a markedly increasing economy of contraction with increasing force. The lower contraction economy at low forces may be explained by an increased rate of energy turnover associated with force generation and relaxation when motor units are contracting at low firing rates. Hence, we argue that recruitment and rate coding may have a profound effect on the economy of contraction at different force levels.


2018 ◽  
Vol 118 (9) ◽  
pp. 1789-1800 ◽  
Author(s):  
Hannah L. Dimmick ◽  
Jonathan D. Miller ◽  
Adam J. Sterczala ◽  
Michael A. Trevino ◽  
Trent J. Herda

1998 ◽  
Vol 23 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Christopher Rich ◽  
George L. O′Brien ◽  
Enzo Cafarelli

Motor unit firing rates in human muscle can be determined from recordings made with small-diameter microelectrodes inserted directly into the muscle during voluntary contraction. Frequently, these counts are pooled to give an average motor unit firing rate under a given set of conditions. Since the fibers of one motor unit are dispersed among the cells of several others, it is conceivable that discharge rates can be measured in more than one cell from the same unit. If this occurred frequently, the distribution of firing rates could be influenced by those from units counted more than once. Based on literature values, we made the following assumptions: vastus lateralis contains approximately 300 motor units, with an average innervation ratio of 1500. Muscle cell diameter is about 50 to 100 μm and cells are randomly distributed over a motor unit territory of 10 μm diameter. The recording range of a microelectrode is about 600 μm. Given the distribution of cells normally found in whole human muscle, the probability of recording from two or more cells of the same motor unit at 50% MVC follows a Poisson distribution with a mean of 0.44. This model suggests that although there is a low probability of some duplication in this technique, the extent to which it influences the distribution of average motor unit firing rates is minimal over the entire range of forces produced by vastus lateralis. Key words: probability, motor unit, single unit recording, human muscle, rate coding


2015 ◽  
Vol 18 (04) ◽  
pp. 1550016 ◽  
Author(s):  
Nathan P. Wages ◽  
Travis W. Beck ◽  
Xin Ye ◽  
Joshua C. Carr ◽  
Cody A. Miller

Purpose: To evaluate the post-exercise time course for muscle relaxation and recovery following aerobic exercise in different postural resting positions between the dominant and non-dominant vastus lateralis muscles. Methods: Subjects exercised on an upright cycle ergometer, using only their dominate leg, for 2[Formula: see text]min at 30% VO2 peak. Following this warm-up, subjects then cycled for 30[Formula: see text]min at 60% VO2 peak. After the aerobic phase, subjects cooled down for 2[Formula: see text]min at 30% VO2 peak. Resting mechanomyographic amplitude was measured prior to and following aerobic exercise. Results: There was an approximate [Formula: see text] and [Formula: see text] decrease (upright sitting position with the subject’s knee joint angle fixed at 180[Formula: see text]) and an approximate [Formula: see text] and [Formula: see text] decrease (upright sitting position with the subject’s knee joint angle fixed at 90[Formula: see text]) in normalized mechanomyographic amplitude after aerobic exercise for the dominant and non-dominate vastus lateralis muscles, respectfully. Conclusion: There appears to be a potential cross-over relaxation effect during the sitting postural positions, but not during the lying supine postural positions. Furthermore, it appears that the relaxation from the dominant vastus lateralis muscle potentially influenced the increased relaxation of the non-dominant vastus lateralis muscle.


2008 ◽  
Vol 33 (6) ◽  
pp. 1086-1095 ◽  
Author(s):  
Teatske M. Altenburg ◽  
Cornelis J. de Ruiter ◽  
Peter W.L. Verdijk ◽  
Willem van Mechelen ◽  
Arnold de Haan

A single shortening contraction reduces the force capacity of muscle fibers, whereas force capacity is enhanced following lengthening. However, how motor unit recruitment and discharge rate (muscle activation) are adapted to such changes in force capacity during submaximal contractions remains unknown. Additionally, there is limited evidence for force enhancement in larger muscles. We therefore investigated lengthening- and shortening-induced changes in activation of the knee extensors. We hypothesized that when the same submaximal torque had to be generated following shortening, muscle activation had to be increased, whereas a lower activation would suffice to produce the same torque following lengthening. Muscle activation following shortening and lengthening (20° at 10°/s) was determined using rectified surface electromyography (rsEMG) in a 1st session (at 10% and 50% maximal voluntary contraction (MVC)) and additionally with EMG of 42 vastus lateralis motor units recorded in a 2nd session (at 4%–47%MVC). rsEMG and motor unit discharge rates following shortening and lengthening were normalized to isometric reference contractions. As expected, normalized rsEMG (1.15 ± 0.19) and discharge rate (1.11 ± 0.09) were higher following shortening (p < 0.05). Following lengthening, normalized rsEMG (0.91 ± 0.10) was, as expected, lower than 1.0 (p < 0.05), but normalized discharge rate (0.99 ± 0.08) was not (p > 0.05). Thus, muscle activation was increased to compensate for a reduced force capacity following shortening by increasing the discharge rate of the active motor units (rate coding). In contrast, following lengthening, rsEMG decreased while the discharge rates of active motor units remained similar, suggesting that derecruitment of units might have occurred.


2009 ◽  
Vol 107 (1) ◽  
pp. 235-243 ◽  
Author(s):  
Paola Contessa ◽  
Alexander Adam ◽  
Carlo J. De Luca

During isometric contractions, the fluctuation of the force output of muscles increases as the muscle fatigues, and the contraction is sustained to exhaustion. We analyzed motor unit firing data from the vastus lateralis muscle to investigate which motor unit control parameters were associated with the increased force fluctuation. Subjects performed a sequence of isometric constant-force contractions sustained at 20% maximal force, each spaced by a 6-s rest period. The contractions were performed until the mean value of the force output could not be maintained at the desired level. Intramuscular EMG signals were detected with a quadrifilar fine-wire sensor. The EMG signals were decomposed to identify all of the firings of several motor units by using an artificial intelligence-based set of algorithms. We were able to follow the behavior of the same motor units as the endurance time progressed. The force output of the muscle was filtered to remove contributions from the tracking task. The coefficient of variation of the force was found to increase with endurance time ( P < 0.001, R2 = 0.51). We calculated the coefficient of variation of the firing rates, the synchronization of pairs of motor unit firings, the cross-correlation value of the firing rates of pairs of motor units, the cross-correlation of the firing rates of motor units and the force, and the number of motor units recruited during the contractions. Of these parameters, only the cross-correlation of the firing rates ( P < 0.01, R2 = 0.10) and the number of recruited motor units ( P = 0.042, R2 = 0.22) increased significantly with endurance time for grouped subjects. A significant increase ( P < 0.001, R2 = 0.16) in the cross-correlation of the firing rates and force was also observed. It is suggested that the increase in the cross-correlation of the firing rates is likely due to a decrease in the sensitivity of the proprioceptive feedback from the spindles.


Motor Control ◽  
2016 ◽  
Vol 20 (1) ◽  
pp. 70-86 ◽  
Author(s):  
Matt S. Stock ◽  
Brennan J. Thompson

We examined the means, medians, and variability for motor-unit interpulse intervals (IPIs) during voluntary, high force contractions. Eight men (mean age = 22 years) attempted to perform isometric contractions at 90% of their maximal voluntary contraction force while bipolar surface electromyographic (EMG) signals were detected from the vastus lateralis and vastus medialis muscles. Surface EMG signal decomposition was used to determine the recruitment thresholds and IPIs of motor units that demonstrated accuracy levels ≥ 96.0%. Motor units with high recruitment thresholds demonstrated longer mean IPIs, but the coefficients of variation were similar across all recruitment thresholds. Polynomial regression analyses indicated that for both muscles, the relationship between the means and standard deviations of the IPIs was linear. The majority of IPI histograms were positively skewed. Although low-threshold motor units were associated with shorter IPIs, the variability among motor units with differing recruitment thresholds was comparable.


Sign in / Sign up

Export Citation Format

Share Document