scholarly journals Motor unit control and force fluctuation during fatigue

2009 ◽  
Vol 107 (1) ◽  
pp. 235-243 ◽  
Author(s):  
Paola Contessa ◽  
Alexander Adam ◽  
Carlo J. De Luca

During isometric contractions, the fluctuation of the force output of muscles increases as the muscle fatigues, and the contraction is sustained to exhaustion. We analyzed motor unit firing data from the vastus lateralis muscle to investigate which motor unit control parameters were associated with the increased force fluctuation. Subjects performed a sequence of isometric constant-force contractions sustained at 20% maximal force, each spaced by a 6-s rest period. The contractions were performed until the mean value of the force output could not be maintained at the desired level. Intramuscular EMG signals were detected with a quadrifilar fine-wire sensor. The EMG signals were decomposed to identify all of the firings of several motor units by using an artificial intelligence-based set of algorithms. We were able to follow the behavior of the same motor units as the endurance time progressed. The force output of the muscle was filtered to remove contributions from the tracking task. The coefficient of variation of the force was found to increase with endurance time ( P < 0.001, R2 = 0.51). We calculated the coefficient of variation of the firing rates, the synchronization of pairs of motor unit firings, the cross-correlation value of the firing rates of pairs of motor units, the cross-correlation of the firing rates of motor units and the force, and the number of motor units recruited during the contractions. Of these parameters, only the cross-correlation of the firing rates ( P < 0.01, R2 = 0.10) and the number of recruited motor units ( P = 0.042, R2 = 0.22) increased significantly with endurance time for grouped subjects. A significant increase ( P < 0.001, R2 = 0.16) in the cross-correlation of the firing rates and force was also observed. It is suggested that the increase in the cross-correlation of the firing rates is likely due to a decrease in the sensitivity of the proprioceptive feedback from the spindles.

1998 ◽  
Vol 80 (3) ◽  
pp. 1373-1382 ◽  
Author(s):  
Alexander Adam ◽  
Carlo J. De Luca ◽  
Zeynep Erim

Adam, Alexander, Carlo J. De Luca, and Zeynep Erim. Hand dominance and motor unit firing behavior. J. Neurophysiol. 80: 1373–1382, 1998. Daily preferential use was shown to alter physiological and mechanical properties of skeletal muscle. This study was aimed at revealing differences in the control strategy of muscle pairs in humans who show a clear preference for one hand. We compared the motor unit (MU) recruitment and firing behavior in the first dorsal interosseous (FDI) muscle of both hands in eight male volunteers whose hand preference was evaluated with the use of a standard questionnaire. Myoelectric signals were recorded while subjects isometrically abducted the index finger at 30% of the maximal voluntary contraction (MVC) force. A myoelectric signal decomposition technique was used to accurately identify MU firing times from the myoelectric signal. In MUs of the dominant hand, mean values for recruitment threshold, initial firing rate, average firing rate at target force, and discharge variability were lower when compared with the nondominant hand. Analysis of the cross-correlation between mean firing rate and muscle force revealed cross-correlation peaks of longer latency in the dominant hand than in the nondominant side. This lag of the force output with respect to fluctuations in the firing behavior of MUs is indicative of a greater mechanical delay in the dominant FDI muscle. MVC force was not significantly different across muscle pairs, but the variability of force at the submaximal target level was higher in the nondominant side. The presence of lower average firing rates, lower recruitment thresholds, and greater firing rate/force delay in the dominant hand is consistent with the notion of an increased percentage of slow twitch fibers in the preferentially used muscle, allowing twitch fusion and force buildup to occur at lower firing rates. It is suggested that a lifetime of preferred use may cause adaptations in the fiber composition of the dominant muscle such that the mechanical effectiveness of its MUs increased.


2007 ◽  
Vol 102 (3) ◽  
pp. 1193-1201 ◽  
Author(s):  
Kevin G. Keenan ◽  
Dario Farina ◽  
François G. Meyer ◽  
Roberto Merletti ◽  
Roger M. Enoka

The purpose of the study was to evaluate the use of cross-correlation analysis between simulated surface electromyograms (EMGs) of two muscles to quantify motor unit synchronization. The volume conductor simulated a cylindrical limb with two muscles and bone, fat, and skin tissues. Models of two motor neuron pools were used to simulate 120 s of surface EMG that were detected over both muscles. Short-term synchrony was established using a phenomenological model that aligned the discharge times of selected motor units within and across muscles to simulate physiological levels of motor unit synchrony. The correlation between pairs of surface EMGs was estimated as the maximum of the normalized cross-correlation function. After imposing four levels of motor unit synchrony across muscles, five parameters were varied concurrently in the two muscles to examine their influence on the correlation between the surface EMGs: 1) excitation level (5, 10, 15, and 50% of maximum); 2) muscle size (350 and 500 motor units); 3) fat thickness (1 and 4 mm); 4) skin conductivity (0.1 and 1 S/m); and 5) mean motor unit conduction velocity (2.5 and 4 m/s). Despite a constant and high level of motor unit synchronization among pairs of motor units across the two muscles, the cross-correlation index ranged from 0.08 to 0.56, with variation in the five parameters. For example, cross-correlation of EMGs from pairs of hand muscles, each having thin layers of subcutaneous fat and mean motor unit conduction velocities of 4 m/s, may be relatively insensitive to the level of synchronization across muscles. In contrast, cross-correlation of EMGs from pairs of leg muscles, with larger fat thickness, may exhibit a different sensitivity. These results indicate that cross correlation of the surface EMGs from two muscles provides a limited measure of the level of synchronization between motor units in the two muscles.


2003 ◽  
Vol 90 (5) ◽  
pp. 2919-2927 ◽  
Author(s):  
Alexander Adam ◽  
Carlo J. De Luca

Motor-unit firing patterns were studied in the vastus lateralis muscle of five healthy young men [21.4 ± 0.9 (SD) yr] during a series of isometric knee extensions performed to exhaustion. Each contraction was held at a constant torque level, set to 20% of the maximal voluntary contraction at the beginning of the experiment. Electromyographic signals, recorded via a quadrifilar fine wire electrode, were processed with the precision decomposition technique to identify the firing times of individual motor units. In repeat experiments, whole-muscle mechanical properties were measured during the fatigue protocol using electrical stimulation. The main findings were a monotonic decrease in the recruitment threshold of all motor units and the progressive recruitment of new units, all without a change of the recruitment order. Motor units from the same subject showed a similar time course of threshold decline, but this decline varied among subjects (mean threshold decrease ranged from 23 to 73%). The mean threshold decline was linearly correlated ( R2 ≥ 0.96) with a decline in the elicited peak tetanic torque. In summary, the maintenance of recruitment order during fatigue strongly supports the notion that the observed common recruitment adaptations were a direct consequence of an increased excitatory drive to the motor unit pool. It is suggested that the increased central drive was necessary to compensate for the loss in force output from motor units whose muscle fibers were actively contracting. We therefore conclude that the control scheme of motor-unit recruitment remains invariant during fatigue at least in relatively large muscles performing submaximal isometric contractions.


2018 ◽  
Vol 119 (6) ◽  
pp. 2186-2193 ◽  
Author(s):  
Paola Contessa ◽  
John Letizi ◽  
Gianluca De Luca ◽  
Joshua C. Kline

The control of motor unit firing behavior during fatigue is still debated in the literature. Most studies agree that the central nervous system increases the excitation to the motoneuron pool to compensate for decreased force contributions of individual motor units and sustain muscle force output during fatigue. However, some studies claim that motor units may decrease their firing rates despite increased excitation, contradicting the direct relationship between firing rates and excitation that governs the voluntary control of motor units. To investigate whether the control of motor units in fact changes with fatigue, we measured motor unit firing behavior during repeated contractions of the first dorsal interosseous (FDI) muscle while concurrently monitoring the activation of surrounding muscles, including the flexor carpi radialis, extensor carpi radialis, and pronator teres. Across all subjects, we observed an overall increase in FDI activation and motor unit firing rates by the end of the fatigue task. However, in some subjects we observed increases in FDI activation and motor unit firing rates only during the initial phase of the fatigue task, followed by subsequent decreases during the late phase of the fatigue task while the coactivation of surrounding muscles increased. These findings indicate that the strategy for sustaining force output may occasionally change, leading to increases in the relative activation of surrounding muscles while the excitation to the fatiguing muscle decreases. Importantly, irrespective of changes in the strategy for sustaining force output, the control properties regulating motor unit firing behavior remain unchanged during fatigue. NEW & NOTEWORTHY This work addresses sources of debate surrounding the manner in which motor unit firing behavior is controlled during fatigue. We found that decreases in the motor unit firing rates of the fatiguing muscle may occasionally be observed when the contribution of coactive muscles increases. Despite changes in the strategy employed to sustain the force output, the underlying control properties regulating motor unit firing behavior remain unchanged during muscle fatigue.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7907
Author(s):  
Andrew J. Tweedell ◽  
Matthew S. Tenan

Motor unit synchronization is the tendency of motor neurons and their associated muscle fibers to discharge near-simultaneously. It has been theorized as a control mechanism for force generation by common excitatory inputs to these motor neurons. Magnitude of synchronization is calculated from peaks in cross-correlation histograms between motor unit discharge trains. However, there are many different methods for detecting these peaks and even more indices for calculating synchronization from them. Methodology is diverse, typically laboratory-specific and requires expensive software, like Matlab or LabView. This lack of standardization makes it difficult to draw definitive conclusions about motor unit synchronization. A free, open-source toolbox, “motoRneuron”, for the R programming language, has been developed which contains functions for calculating time domain synchronization using different methods found in the literature. The objective of this paper is to detail the toolbox’s functionality and present a case study showing how the same synchronization index can differ when different methods are used to compute it. A pair of motor unit action potential trains were collected from the forearm during a isometric finger flexion task using fine wire electromyography. The motoRneuron package was used to analyze the discharge time of the motor units for time-domain synchronization. The primary function “mu_synch” automatically performed the cross-correlation analysis using three different peak detection methods, the cumulative sum method, the z-score method, and a subjective visual method. As function parameters defined by the user, only first order recurrence intervals were calculated and a 1 ms bin width was used to create the cross correlation histogram. Output from the function were six common synchronization indices, the common input strength (CIS), k′, k′ − 1, E, S, and Synch Index. In general, there was a high degree of synchronization between the two motor units. However, there was a varying degree of synchronization between methods. For example, the widely used CIS index, which represents a rate of synchronized discharges, shows a 45% difference between the visual and z-score methods. This singular example demonstrates how a lack of consensus in motor unit synchronization methodologies may lead to substantially differing results between studies. The motoRneuron toolbox provides researchers with a standard interface and software to examine time-domain motor unit synchronization.


2005 ◽  
Vol 99 (1) ◽  
pp. 268-280 ◽  
Author(s):  
Alexander Adam ◽  
Carlo J. De Luca

We investigated the firing rate of motor units in the vastus lateralis muscle in five healthy young men (mean = 21.4 yr, SD = 0.9) during a sequence of isometric constant-torque contractions repeated to exhaustion. The contractions were sustained at 20% of the maximal voluntary level, measured at the beginning of the test sequence. Electromyographic (EMG) signals were recorded via quadrifilar fine-wire electrodes and subsequently decomposed into their constituent motor unit action potentials to obtain the motor unit firing times. In addition, we measured the whole muscle mechanical properties during the fatigue task using electrical stimulation. The firing rate of motor units first decreased within the first 10–20% of the endurance time of the contractions and then increased. The firing rate increase was accompanied by recruitment of additional motor units as the force output remained constant. The elicited twitch and tetanic torque responses first increased and then decreased. The two processes modulated in a complementary fashion at the same time. Our data suggest that, when the vastus lateralis muscle is activated to maintain a constant torque output, its motoneuron pool receives a net excitatory drive that first decreases to compensate for the short-lived potentiation of the muscle force twitch and then increases to compensate for the diminution of the force twitch. The underlying inverse relationship between the firing rate and the recruitment threshold that has been reported for nonfatigued contractions is maintained. We, therefore, conclude that the central nervous system control of vastus lateralis motor units remains invariant during fatigue in submaximal isometric isotonic contractions.


1996 ◽  
Vol 76 (3) ◽  
pp. 1503-1516 ◽  
Author(s):  
C. J. de Luca ◽  
P. J. Foley ◽  
Z. Erim

1. The purpose of this study was 1) to characterize the decrease observed in mean firing rates of motor units in the first 8-15 s of isometric constant-force contractions and 2) to investigate possible mechanisms that could account for the ability to maintain force output in the presence of decreasing motor unit firing rates. 2. The decrease in mean firing rates was characterized by investigating myoelectric signals detected with a specialized quadrifilar needle electrode from the first dorsal interosseus (FDI) and the tibialis anterior (TA) muscles of 19 healthy subjects during a total of 85 constant-force isometric contractions at 30, 50, or 80% of maximal effort. The firing times of motor units were obtained from the myoelectric signals with the use of computer algorithms to decompose the signal into the constituent motor unit action potentials. Time-varying mean firing rates and recruitment thresholds were also calculated. 3. Motor units detected from the TA muscle were found to have a continual decrease in their mean firing rates in 36 of 44 trials performed during isometric ankle dorsiflexion at force values ranging from 30 to 80% of maximal effort and a duration of 8-15 s. Likewise, motor units detected in the FDI muscle displayed a decrease in firing rate in 32 of 41 trials performed during constant-force isometric index finger abduction for contractions ranging from 30 to 80% of maximal effort. In 14 contractions (16% of total), firing rates were essentially constant, whereas in 3 contractions (4%), firing rates appeared to increase. 4. Motor units with the higher recruitment thresholds and lower firing rates tended to display the greater decreases in firing rate over the constant-force interval, whereas motor units with lower recruitment thresholds and higher firing rates had lesser rates of decrease. Furthermore, increasing contraction levels tended to intensify the decrease in the motor unit firing rates. 5. Three possible mechanisms were considered as factors responsible for the maintaining of force output while motor units decreased their firing rates: motor unit recruitment, agonist/antagonist interaction, and twitch potentiation. Of these, motor unit recruitment was discarded first because none was observed during the 8-15 s duration of any of the 85 contractions. Furthermore, contractions outside the physiological range of motor unit recruitment (at 80% of maximal effort) revealed the same decreasing trend in firing rates, ruling out recruitment as the means of sustaining force output. 6. The role of agonist or antagonist muscle interaction was investigated with the use of the muscles controlling the wrist joint. Myoelectric signals were recorded with quadrifilar needle electrodes from the wrist extensor muscles while myoelectric activity in the wrist flexor muscles was concurrently monitored with surface electrodes during constant-force isometric wrist extension at 50% of maximal effort. Firing rates of the motor units in the wrist extensor muscles simultaneously decreased while the flexor muscles were determined to be inactive. 7. All the findings of this study regarding the behavior of the firing rates could be well explained by the reported characteristics of twitch potentiation that have been previously documented in animals and humans. 8. The results of this study, combined with the results of other investigators, provide the following scenario to explain how a constant-force isometric contraction is sustained. As the contraction progresses, the twitch force of the muscle fibers undergoes a potentiation followed by a decrease. Simultaneously, the "late adaptation" property of the motoneuron decreases the firing rate of the motor unit. Findings of this study suggest that voluntary reduction in firing rates also cannot be ruled out as a means to augment the adaptation in motoneurons. (ABSTRACT TRUNCATED)


2018 ◽  
Vol 120 (6) ◽  
pp. 3246-3256 ◽  
Author(s):  
Spencer A. Murphy ◽  
Francesco Negro ◽  
Dario Farina ◽  
Tanya Onushko ◽  
Matthew Durand ◽  
...  

Following stroke, hyperexcitable sensory pathways, such as the group III/IV afferents that are sensitive to ischemia, may inhibit paretic motor neurons during exercise. We quantified the effects of whole leg ischemia on paretic vastus lateralis motor unit firing rates during submaximal isometric contractions. Ten chronic stroke survivors (>1 yr poststroke) and 10 controls participated. During conditions of whole leg occlusion, the discharge timings of motor units were identified from decomposition of high-density surface electromyography signals during repeated submaximal knee extensor contractions. Quadriceps resting twitch responses and near-infrared spectroscopy measurements of oxygen saturation as an indirect measure of blood flow were made. There was a greater decrease in paretic motor unit discharge rates during the occlusion compared with the controls (average decrease for stroke and controls, 12.3 ± 10.0% and 0.1 ± 12.4%, respectively; P < 0.001). The motor unit recruitment thresholds did not change with the occlusion (stroke: without occlusion, 11.68 ± 5.83%MVC vs. with occlusion, 11.11 ± 5.26%MVC; control: 11.87 ± 5.63 vs. 11.28 ± 5.29%MVC). Resting twitch amplitudes declined similarly for both groups in response to whole leg occlusion (stroke: 29.16 ± 6.88 vs. 25.75 ± 6.78 Nm; control: 38.80 ± 13.23 vs 30.14 ± 9.64 Nm). Controls had a greater exponential decline (lower time constant) in oxygen saturation compared with the stroke group (stroke time constant, 22.90 ± 10.26 min vs. control time constant, 5.46 ± 4.09 min; P < 0.001). Ischemia of the muscle resulted in greater neural inhibition of paretic motor units compared with controls and may contribute to deficient muscle activation poststroke. NEW & NOTEWORTHY Hyperexcitable inhibitory sensory pathways sensitive to ischemia may play a role in deficient motor unit activation post stroke. Using high-density surface electromyography recordings to detect motor unit firing instances, we show that ischemia of the exercising muscle results in greater inhibition of paretic motor unit firing rates compared with controls. These findings are impactful to neurophysiologists and clinicians because they implicate a novel mechanism of force-generating impairment poststroke that likely exacerbates baseline weakness.


1988 ◽  
Vol 60 (6) ◽  
pp. 2138-2151 ◽  
Author(s):  
A. E. Olha ◽  
B. J. Jasmin ◽  
R. N. Michel ◽  
P. F. Gardiner

1. Rat plantaris muscles were subjected to chronic overload by the surgical removal of the soleus and most of the gastrocnemius muscles. Twelve to 16 wk later whole muscle and motor unit (ventral root dissection technique) contractile properties as well as histochemistry were determined. 2. Motor units were categorized as fast, fatigable (FF), fast, intermediate fatigue-resistant (FI), fast, fatigue-resistant (FR), and slow (S) based on contractile characteristics. Muscle fibers were identified as type I and type II according to myofibrillar ATPase staining. 3. Whole muscles demonstrated increases in wet weight, tetanic force, proportion of type I fibers, and mean cross-sectional areas of both type I and II fibers, as a result of chronic overload. 4. Tetanic tension increased by the same relative magnitude in all motor units whereas twitch tension remained unchanged. A significant change in the proportions of the motor unit types occurred in overloaded muscles, such that the latter contained higher proportions of FF and S units, and lower proportions of FI and FR units, than normal muscles. 5. The fatigue profile of a composite constructed from a summation of motor unit responses revealed that the overloaded plantaris displayed fatigue resistance similar to that of the normal plantaris for a given absolute force output. 6. Glycogen-depleted fibers of hypertrophied single motor units demonstrated uniform myofibrillar ATPase and SDH staining characteristics suggesting that metabolic adaptations among fibers of the same unit were similar after 12-16 wk of overload. 7. The finding that overload caused a uniform increase in the tetanic strength of all motor units, whereas alterations in fatigue resistance varied in degree and direction among unit types, demonstrate that these two properties are not controlled in parallel in this model. The smallest units maintain or even increase their fatigue resistance during the hypertrophic process, whereas high threshold units actually decrease in fatigue resistance.


Sign in / Sign up

Export Citation Format

Share Document