scholarly journals TRPM3 expression and control of glutamate release from primary vagal afferent neurons.

Author(s):  
Forrest J. Ragozzino ◽  
Rachel A. Arnold ◽  
Axel J Fenwick ◽  
Timothy Paul Riley ◽  
Jonathan E.M. Lindberg ◽  
...  

Vagal afferent fibers contact neurons in the nucleus of the solitary tract (NTS) and release glutamate via three distinct release pathways: synchronous, asynchronous, and spontaneous. The presence of TRPV1 in vagal afferents is predictive of activity-dependent asynchronous glutamate release along with temperature-sensitive spontaneous vesicle fusion. However, pharmacological blockade or genetic deletion of TRPV1 does not eliminate the asynchronous profile and only attenuates the temperature-dependent spontaneous release at high temperatures (>40˚C), indicating additional temperature-sensitive calcium conductance(s) contributing to these release pathways. The transient receptor potential cation channel melastatin subtype 3 (TRPM3) is a calcium-selective channel which functions as a thermosensor (30-37˚C) in somatic primary afferent neurons. We predict TRPM3 is expressed in vagal afferent neurons and contributes to asynchronous and spontaneous glutamate release pathways. We investigated these hypotheses via measurements on cultured nodose neurons and in brainstem slice preparations containing vagal afferent to NTS synaptic contacts. We found histological and genetic evidence that TRPM3 is highly expressed in vagal afferent neurons. The TRPM3-selective agonist, pregnenolone sulfate, rapidly and reversibly activated the majority (~70%) of nodose neurons; most of which also contained TRPV1. We confirmed the role of TRPM3 with pharmacological blockade and genetic deletion. In the brain, TRPM3 signaling strongly controlled both basal and temperature-driven spontaneous glutamate release. Surprisingly, genetic deletion of TRPM3 did not alter synchronous nor asynchronous glutamate release. These results provide convergent evidence that vagal afferents express functional TRPM3 that serves as an additional temperature-sensitive calcium conductance involved in controlling spontaneous glutamate release onto neurons in the NTS.

2010 ◽  
Vol 298 (2) ◽  
pp. G212-G221 ◽  
Author(s):  
Huan Zhao ◽  
Leslie K. Sprunger ◽  
Steven M. Simasko

Vagal afferent neurons relay important information regarding the control of the gastrointestinal system. However, the ionic mechanisms that underlie vagal activation induced by sensory inputs are not completely understood. We postulate that transient receptor potential (TRP) channels and/or two-pore potassium (K2p) channels are targets for activating vagal afferents. In this study we explored the distribution of these channels in vagal afferents by quantitative PCR after a capsaicin treatment to eliminate capsaicin-sensitive neurons, and by single-cell PCR measurements in vagal afferent neurons cultured after retrograde labeling from the stomach or duodenum. We found that TRPC1/3/5/6, TRPV1-4, TRPM8, TRPA1, TWIK2, TRAAK, TREK1, and TASK1/2 were all present in rat nodose ganglia. Both lesion results and single-cell PCR results suggested that TRPA1 and TRPC1 were preferentially expressed in neurons that were either capsaicin sensitive or TRPV1 positive. Expression of TRPM8 varied dynamically after various manipulations, which perhaps explains the disparate results obtained by different investigators. Last, we also examined ion channel distribution with the A-type CCK receptor (CCK-RA) and found there was a significant preference for neurons that express TRAAK to also express CCK-RA, especially in gut-innervating neurons. These findings, combined with findings from prior studies, demonstrated that background conductances such as TRPC1, TRPA1, and TRAAK are indeed differentially distributed in the nodose ganglia, and not only do they segregate with specific markers, but the degree of overlap is also dependent on the innervation target.


2016 ◽  
Vol 310 (9) ◽  
pp. R794-R805 ◽  
Author(s):  
Shaw-wen Wu ◽  
Jonathan E. M. Lindberg ◽  
James H. Peters

Primary vagal afferent neurons express a multitude of thermosensitive ion channels. Within this family of ion channels, the heat-sensitive capsaicin receptor (TRPV1) greatly influences vagal afferent signaling by determining the threshold for action-potential initiation at the peripheral endings, while controlling temperature-sensitive forms of glutamate release at central vagal terminals. Genetic deletion of TRPV1 does not completely eliminate these temperature-dependent effects, suggesting involvement of additional thermosensitive ion channels. The warm-sensitive, calcium-permeable, ion channel TRPV3 is commonly expressed with TRPV1; however, the extent to which TRPV3 is found in vagal afferent neurons is unknown. Here, we begin to characterize the genetic and functional expression of TRPV3 in vagal afferent neurons using molecular biology (RT-PCR and RT-quantitative PCR) in whole nodose and isolated neurons and fluorescent calcium imaging on primary cultures of nodose ganglia neurons. We confirmed low-level TRPV3 expression in vagal afferent neurons and observed direct activation with putative TRPV3 agonists eugenol, ethyl vanillin (EVA), and farnesyl pyrophosphate (FPP). Agonist activation stimulated neurons also containing TRPV1 and was blocked by ruthenium red. FPP sensitivity overlapped with EVA and eugenol but represented the smallest percentage of vagal afferent neurons, and it was the only agonist that did not stimulate neurons from TRPV3−/−1 mice, suggesting FPP has the highest selectivity. Further, FPP was predictive of enhanced responses to capsaicin, EVA, and eugenol in rats. From our results, we conclude TRPV3 is expressed in a discrete subpopulation of vagal afferent neurons and may contribute to vagal afferent signaling either directly or in combination with TRPV1.


2020 ◽  
Vol 319 (6) ◽  
pp. C1097-C1106
Author(s):  
Forrest J. Ragozzino ◽  
Rachel A. Arnold ◽  
Cody W. Kowalski ◽  
Marina I. Savenkova ◽  
Ilia N. Karatsoreos ◽  
...  

Circulating blood glucocorticoid levels are dynamic and responsive to stimuli that impact autonomic function. In the brain stem, vagal afferent terminals release the excitatory neurotransmitter glutamate to neurons in the nucleus of the solitary tract (NTS). Vagal afferents integrate direct visceral signals and circulating hormones with ongoing NTS activity to control autonomic function and behavior. Here, we investigated the effects of corticosterone (CORT) on glutamate signaling in the NTS using patch-clamp electrophysiology on brain stem slices containing the NTS and central afferent terminals from male C57BL/6 mice. We found that CORT rapidly decreased both action potential-evoked and spontaneous glutamate signaling. The effects of CORT were phenocopied by dexamethasone and blocked by mifepristone, consistent with glucocorticoid receptor (GR)-mediated signaling. While mRNA for GR was present in both the NTS and vagal afferent neurons, selective intracellular quenching of G protein signaling in postsynaptic NTS neurons eliminated the effects of CORT. We then investigated the contribution of retrograde endocannabinoid signaling, which has been reported to transduce nongenomic GR effects. Pharmacological or genetic elimination of the cannabinoid type 1 receptor signaling blocked CORT suppression of glutamate release. Together, our results detail a mechanism, whereby the NTS integrates endocrine CORT signals with fast neurotransmission to control autonomic reflex pathways.


2015 ◽  
Vol 308 (5) ◽  
pp. R360-R369 ◽  
Author(s):  
Yusaku Iwasaki ◽  
Yuko Maejima ◽  
Shigetomo Suyama ◽  
Masashi Yoshida ◽  
Takeshi Arai ◽  
...  

Oxytocin (Oxt), a neuropeptide produced in the hypothalamus, is implicated in regulation of feeding. Recent studies have shown that peripheral administration of Oxt suppresses feeding and, when infused subchronically, ameliorates hyperphagic obesity. However, the route through which peripheral Oxt informs the brain is obscure. This study aimed to explore whether vagal afferents mediate the sensing and anorexigenic effect of peripherally injected Oxt in mice. Intraperitoneal Oxt injection suppressed food intake and increased c-Fos expression in nucleus tractus solitarius to which vagal afferents project. The Oxt-induced feeding suppression and c-Fos expression in nucleus tractus solitarius were blunted in mice whose vagal afferent nerves were blocked by subdiaphragmatic vagotomy or capsaicin treatment. Oxt induced membrane depolarization and increases in cytosolic Ca2+ concentration ([Ca2+]i) in single vagal afferent neurons. The Oxt-induced [Ca2+]i increases were markedly suppressed by Oxt receptor antagonist. These Oxt-responsive neurons also responded to cholecystokinin-8 and contained cocaine- and amphetamine-regulated transcript. In obese diabetic db/db mice, leptin failed to increase, but Oxt increased [Ca2+]i in vagal afferent neurons, and single or subchronic infusion of Oxt decreased food intake and body weight gain. These results demonstrate that peripheral Oxt injection suppresses food intake by activating vagal afferent neurons and thereby ameliorates obesity in leptin-resistant db/db mice. The peripheral Oxt-regulated vagal afferent neuron provides a novel target for treating hyperphagia and obesity.


2006 ◽  
Vol 290 (2) ◽  
pp. C427-C432 ◽  
Author(s):  
J. H. Peters ◽  
R. C. Ritter ◽  
S. M. Simasko

We have previously reported that intraceliac infusion of leptin induces a reduction of meal size that depends on intact vagal afferents. This effect of leptin is enhanced in the presence of cholecystokinin (CCK). The mechanisms by which leptin and CCK activate vagal afferent neurons are not known. In the present study, we have begun to address this question by using patch-clamp electrophysiological techniques to examine the mechanisms by which leptin and CCK activate cultured vagal afferents from adult rat nodose ganglia. We found that leptin depolarized 41 (60%) of 68 neurons. The magnitude of membrane depolarization was dependent on leptin concentration and occurred in both capsaicin-sensitive and capsaicin-insensitive neurons. We also found that a majority (16 of 22; 73%) of nodose neurons activated by leptin were also sensitive to CCK. CCK-induced depolarization was primarily associated with the increase of an inward current (11 of 12), whereas leptin induced multiple changes in background conductances through a decrease in an outward current (7 of 13), an increase in an inward current (3 of 13), or both (3 of 13). However, further isolation of background currents by recording in solutions that contained only sodium or only potassium revealed that both leptin and CCK were capable of increasing a sodium-dependent conductance or inhibiting a potassium-dependent conductance. Our results support the hypothesis that vagal afferents are a point of convergence and integration of leptin and CCK signaling for control of food intake and suggest multiple ionic mechanisms by which leptin and CCK activate vagal afferent neurons.


Endocrinology ◽  
2010 ◽  
Vol 151 (11) ◽  
pp. 5237-5246 ◽  
Author(s):  
Huan Zhao ◽  
Steven M. Simasko

Cholecystokinin (CCK), an endogenous brain-gut peptide, is released after food intake and promotes the process of satiation via activation of the vagus nerve. In vitro, CCK increases cytosolic calcium concentrations and produces membrane depolarization in a subpopulation of vagal afferent neurons. However, the specific mechanisms and ionic conductances that mediate these effects remain unclear. In this study we used calcium imaging, electrophysiological measurements, and single cell PCR analysis on cultured vagal afferent neurons to address this issue directly. A cocktail of blockers of voltage-dependent calcium channels (VDCC) failed to block CCK-induced calcium responses. In addition, SKF96365, a compound that blocks both VDCC and the C family of transient receptor potential (TRP) channels, also failed to prevent responses to CCK. Together these results suggest that CCK-induced calcium influx is not subsequent to the membrane depolarization. Ruthenium red, an inhibitor of the TRPV family and TRPA1, blocked both depolarizing responses to CCK and CCK-induced calcium increases, but had no effect on the KCl-induced calcium response. Selective block of TRPV1 and TRPA1 channels with SB366791 and HC030031, respectively, had minor effects on the CCK-induced response. Application of 2-aminoethoxydiphenyl borate, an activator of select TRPV channels but a blocker of several TRPC channels, either had no effect or enhanced the responses to CCK. Further, results from PCR experiments revealed a significant clustering of TRPV2-5 in neurons expressing CCK1 receptors. These observations demonstrate that CCK-induced increases in cytosolic calcium and membrane depolarization of vagal afferent neurons are likely mediated by TRPV channels, excluding TRPV1.


Endocrinology ◽  
2004 ◽  
Vol 145 (8) ◽  
pp. 3652-3657 ◽  
Author(s):  
J. H. Peters ◽  
A. B. Karpiel ◽  
R. C. Ritter ◽  
S. M. Simasko

Abstract To test the hypothesis that leptin can directly activate vagal afferent neurons, we used fluorescence imaging to detect acute changes in cytosolic calcium after leptin application to primary cultures of vagal afferent neurons dissociated from adult rat nodose ganglia. We found that approximately 40% of vagal afferent neurons exposed to leptin (40 ng/ml) responded with rapid and reversible increases in cytosolic calcium. These responses were dependent upon extracellular calcium. As previously reported, about 35% of vagal afferents increase cytosolic calcium in response to the gut-peptide cholecystokinin (CCK). A majority (74%) of neurons that responded to CCK also exhibited increases in cytosolic calcium in response to leptin. In addition, synergistic increases in cytosolic calcium were observed when leptin and CCK were applied in combination. These results demonstrate that leptin acts directly on vagal afferent neurons to trigger acute influxes of extracellular calcium. Our results also suggest cooperation between leptin and CCK in the activation of some vagal afferent neurons. Acute activation of vagal afferents by leptin alone and in combination with CCK may contribute to modulation of visceral reflexes and control of food intake.


2021 ◽  
Author(s):  
Jiayue Cao ◽  
Xiaokai Wang ◽  
Terry L Powley ◽  
Zhongming Liu

Gastric electrical stimulation (GES) is a bioelectric intervention for gastroparesis, obesity, and other functional gastrointestinal disorders. In a potential mechanism of action, GES activates the nerve endings of vagal afferent neurons and induces the vago-vagal reflex through the nucleus tractus solitarius (NTS) in the brainstem. However, it is unclear where and how to stimulate in order to optimize the vagal afferent responses. To address this question with electrophysiology in rats, we applied mild electrical currents to two serosal targets on the distal forestomach with dense distributions of vagal intramuscular arrays that innervated the circular and longitudinal smooth muscle layers. During stimulation, we recorded single and multi-unit responses in NTS and evaluated how the recorded responses depended on the stimulus orientation and amplitude. We found that NTS responses were highly selective to the stimulus orientation for a range of stimulus amplitudes. The strongest responses were observed when the applied current flowed in the same direction as the intramuscular arrays in parallel with the underlying smooth muscle fibers. Our results suggest that gastric neurons in NTS may encode the orientation-specific activity of gastric smooth muscles relayed by vagal afferent neurons. This finding suggests that the orientation of GES is critical to effective engagement of vagal afferents and should be considered in light of the structural phenotypes of vagal terminals in the stomach.


1998 ◽  
Vol 274 (2) ◽  
pp. H441-H447 ◽  
Author(s):  
Holly R. Middlekauff ◽  
Scott A. Rivkees ◽  
Helen E. Raybould ◽  
Melo Bitticaca ◽  
Joshua I. Goldhaber ◽  
...  

There is evidence to suggest that during ischemia adenosine acts on cardiac vagal afferent neurons to activate systemic reflexes and to modulate cardiac nociception. The purpose of this study was to determine whether adenosine receptors are present and have direct cellular electrophysiological actions on cardiac vagal afferent neurons. In radioreceptor assays of nodose ganglion tissue from rats, binding was detectable for A1 (39.6 ± 1.2 fmol/mg protein) but not A2aadenosine receptors. These findings were confirmed using the complementary approach of receptor-labeling autoradiography. Using in situ hybridization, we saw specific labeling over ∼50% of neurons in the nodose ganglia, but not over nonneuronal cells. In colabeling studies, cardiac vagal afferent neurons were identified by retroneuronal labeling with fluororuby. Of cardiac vagal afferents approximately one-half were strongly positive for A1 adenosine receptors (immunocytochemistry). In patch-clamping experiments, adenosine inhibited peak inward calcium current in 7 of 11 cells by 48 ± 13%. In conclusion, adenosine A1receptors reside on a subset of vagal afferent neurons, including cardiac vagal afferents, and have electrophysiological effects that modulate neuroexcitability in cultured nodose ganglion neurons.


Sign in / Sign up

Export Citation Format

Share Document