Intermittent stimulus presentation stabilizes neuronal responses in macaque area MT

2012 ◽  
Vol 108 (8) ◽  
pp. 2101-2114 ◽  
Author(s):  
P. Christiaan Klink ◽  
Anna Oleksiak ◽  
Martin J. M. Lankheet ◽  
Richard J. A. van Wezel

Repeated stimulation impacts neuronal responses. Here we show how response characteristics of sensory neurons in macaque visual cortex are influenced by the duration of the interruptions during intermittent stimulus presentation. Besides effects on response magnitude consistent with neuronal adaptation, the response variability was also systematically influenced. Spike rate variability in motion-sensitive area MT decreased when interruption durations were systematically increased from 250 to 2,000 ms. Activity fluctuations between subsequent trials and Fano factors over full response sequences were both lower with longer interruptions, while spike timing patterns became more regular. These variability changes partially depended on the response magnitude, but another significant effect that was uncorrelated with adaptation-induced changes in response magnitude was also present. Reduced response variability was furthermore accompanied by changes in spike-field coherence, pointing to the possibility that reduced spiking variability results from interactions in the local cortical network. While neuronal response stabilization may be a general effect of repeated sensory stimulation, we discuss its potential link with the phenomenon of perceptual stabilization of ambiguous stimuli as a result of interrupted presentation.

1993 ◽  
Vol 71 (5-6) ◽  
pp. 374-378 ◽  
Author(s):  
Hisao Maeda ◽  
Hiroshi Morimoto ◽  
Kazuyuki Yanagimoto

Extracellular single or multiple neuronal activities were recorded from the basolateral portion of the amygdala of wild adult cats under an unanesthetized, freely moving condition, and neuronal responsiveness to neutral, aversive, and appetitive stimuli was studied. Of 71 units, 47 (66%) responded to some of the stimuli. The patterns of neuronal responses were classified into three types on the basis of response duration. Of the responses sampled, 9% rapidly attenuated and disappeared before termination of stimulus presentation (pattern A), 58% of responses were maintained during the period of the stimulus presentation but disappeared abruptly after termination (pattern B), and 33% of responses markedly outlasted the stimulus presentation period (pattern C). Pattern A responses habituated readily and were most prominent when neutral stimuli were presented, so this type of response was considered to underlie alterting or orienting responses. Pattern B responses were observed equally for the three kinds of stimuli, and were suggested to be predominantly involved in perception of the environmental stimuli. Pattern C responses habituated least and tended to be elicited more frequently by aversive stimuli. This type of response was interpreted to reflect emotional arousal. These findings were considered to be compatible with the hypothesis that the amygdala plays an important role in converting environmental stimuli into emotions such as rage or fear.Key words: emotions, aversiveness, appetitiveness, amygdala, extracellular neuronal activity.


2021 ◽  
Vol 4 (Supplement_1) ◽  
pp. 10-11
Author(s):  
J Pujo ◽  
G De Palma ◽  
J Lu ◽  
S M Collins ◽  
P Bercik

Abstract Background Abdominal pain is a common complaint in patients with chronic gastrointestinal disorders. Accumulating evidence suggests that gut microbiota is an important determinant of gut function, including visceral sensitivity. Germ-free (GF) mice have been shown to display visceral hypersensitivity, which normalizes after colonization. Sex also appears to play a key role in visceral sensitivity, as women report more abdominal pain than men. Thus, both gut bacteria and sex are important in the regulation of gut nociception, but the underlying mechanisms remain poorly understood. Aims To investigate the role of gut microbiota and sex in abdominal pain. Methods We used primary cultures of sensory neurons from dorsal root ganglia (DRG) of female and male conventionally raised (SPF) or germ-free (GF) mice (7–18 weeks old). To study the visceral afferent activity in vitro, calcium mobilization in DRG sensory neurons was measured by inverted fluorescence microscope using a fluorescent calcium probe Fluo-4 (1mM). Two parameters were considered i) the percentage of responding neurons ii) the intensity of the neuronal response. First, DRG sensory neurons were stimulated by a TRPV1 agonist capsaicin (12.5nM, 125nM and 1.25µM) or by a mixture of G-protein coupled receptors agonist (GPCR: bradykinin, histamine and serotonin; 1µM, 10µM and 100µM). We next measured the neuronal production of substance P and calcitonin gene-related peptide (CGRP), two neuropeptides associated with nociception, in response to capsaicin (1.25µM) or GPCR agonists (100µM) by ELISA and EIA, respectively. Results The percentage of neurons responding to capsaicin and GPCR agonists was similar in male and female SPF and GF mice. However, the intensity of the neuronal response was higher in SPF male compared to SPF female in response to capsaicin (125nM: p=0.0336; 1.25µM: p=0.033) but not to GPCR agonists. Neuronal activation was similar in GF and SPF mice of both sexes after administration of capsaicin or GPCR agonists. Furthermore, substance P and CGRP production by sensory neurons induced by capsaicin or GPCR agonists was similar in SPF and GF mice, regardless of sex. However, while the response to capsaicin was similar, the GPCR agonists-induced production of substance P was higher in SPF male mice compared to SPF females (p=0.003). The GPCR agonists-induced production of CGRP was similar in SPF male and female mice. Conclusions Our data suggest that at the level of DRG neurons, the absence of gut microbiota does not predispose to visceral hypersensitivity. The intensity of DRG neuronal responses to capsaicin and the GPCR agonists-induced production of substance P are higher in male compared to female mice, in contrast to previously published studies in various models of acute and chronic pain. Further studies are thus needed to investigate the role of sex in visceral sensitivity. Funding Agencies CIHR


Motor Control ◽  
2015 ◽  
Vol 19 (4) ◽  
pp. 253-270 ◽  
Author(s):  
Asger Roer Pedersen ◽  
Peter William Stubbs ◽  
Jørgen Feldbæk Nielsen

The aim was to investigate trial-by-trial response characteristics in the short-latency stretch reflex (SSR). Fourteen dorsiflexion stretches were applied to the ankle joint with a precontracted soleus muscle on 2 days. The magnitude and variability of trial-by-trial responses of the SSR were assessed. The SSR was log-normally distributed and variance heterogeneous between subjects. For some subjects, the magnitude and variance differed between days and stretches. As velocity increased, variance heterogeneity tended to decrease and response magnitude increased. The current study demonstrates the need to assess trial-by-trial response characteristics and not averaged curves. Moreover, it provides an analysis of SSR characteristics accounting for log-normally distributed and variance heterogeneous trial-by-trial responses.


2002 ◽  
Vol 87 (4) ◽  
pp. 1749-1762 ◽  
Author(s):  
Shigeto Furukawa ◽  
John C. Middlebrooks

Previous studies have demonstrated that the spike patterns of cortical neurons vary systematically as a function of sound-source location such that the response of a single neuron can signal the location of a sound source throughout 360° of azimuth. The present study examined specific features of spike patterns that might transmit information related to sound-source location. Analysis was based on responses of well-isolated single units recorded from cortical area A2 in α-chloralose-anesthetized cats. Stimuli were 80-ms noise bursts presented from loudspeakers in the horizontal plane; source azimuths ranged through 360° in 20° steps. Spike patterns were averaged across samples of eight trials. A competitive artificial neural network (ANN) identified sound-source locations by recognizing spike patterns; the ANN was trained using the learning vector quantization learning rule. The information about stimulus location that was transmitted by spike patterns was computed from joint stimulus-response probability matrices. Spike patterns were manipulated in various ways to isolate particular features. Full-spike patterns, which contained all spike-count information and spike timing with 100-μs precision, transmitted the most stimulus-related information. Transmitted information was sensitive to disruption of spike timing on a scale of more than ∼4 ms and was reduced by an average of ∼35% when spike-timing information was obliterated entirely. In a condition in which all but the first spike in each pattern were eliminated, transmitted information decreased by an average of only ∼11%. In many cases, that condition showed essentially no loss of transmitted information. Three unidimensional features were extracted from spike patterns. Of those features, spike latency transmitted ∼60% more information than that transmitted either by spike count or by a measure of latency dispersion. Information transmission by spike patterns recorded on single trials was substantially reduced compared with the information transmitted by averages of eight trials. In a comparison of averaged and nonaveraged responses, however, the information transmitted by latencies was reduced by only ∼29%, whereas information transmitted by spike counts was reduced by 79%. Spike counts clearly are sensitive to sound-source location and could transmit information about sound-source locations. Nevertheless, the present results demonstrate that the timing of the first poststimulus spike carries a substantial amount, probably the majority, of the location-related information present in spike patterns. The results indicate that any complete model of the cortical representation of auditory space must incorporate the temporal characteristics of neuronal response patterns.


1999 ◽  
Vol 11 (3) ◽  
pp. 300-311 ◽  
Author(s):  
Edmund T. Rolls ◽  
Martin J. Tovée ◽  
Stefano Panzeri

Backward masking can potentially provide evidence of the time needed for visual processing, a fundamental constraint that must be incorporated into computational models of vision. Although backward masking has been extensively used psychophysically, there is little direct evidence for the effects of visual masking on neuronal responses. To investigate the effects of a backward masking paradigm on the responses of neurons in the temporal visual cortex, we have shown that the response of the neurons is interrupted by the mask. Under conditions when humans can just identify the stimulus, with stimulus onset asynchronies (SOA) of 20 msec, neurons in macaques respond to their best stimulus for approximately 30 msec. We now quantify the information that is available from the responses of single neurons under backward masking conditions when two to six faces were shown. We show that the information available is greatly decreased as the mask is brought closer to the stimulus. The decrease is more marked than the decrease in firing rate because it is the selective part of the firing that is especially attenuated by the mask, not the spontaneous firing, and also because the neuronal response is more variable at short SOAs. However, even at the shortest SOA of 20 msec, the information available is on average 0.1 bits. This compares to 0.3 bits with only the 16-msec target stimulus shown and a typical value for such neurons of 0.4 to 0.5 bits with a 500-msec stimulus. The results thus show that considerable information is available from neuronal responses even under backward masking conditions that allow the neurons to have their main response in 30 msec. This provides evidence for how rapid the processing of visual information is in a cortical area and provides a fundamental constraint for understanding how cortical information processing operates.


2020 ◽  
Vol 3 ◽  
pp. 34
Author(s):  
Kathy L. Ruddy ◽  
David M. Cole ◽  
Colin Simon ◽  
Marc T. Bächinger

The occurrence of neuronal spikes recorded directly from sensory cortex is highly irregular within and between presentations of an invariant stimulus. The traditional solution has been to average responses across many trials. However, with this approach, response variability is downplayed as noise, so it is assumed that statistically controlling it will reveal the brain’s true response to a stimulus. A mounting body of evidence suggests that this approach is inadequate. For example, experiments show that response variability itself varies as a function of stimulus dimensions like contrast and state dimensions like attention. In other words, response variability has structure, is therefore potentially informative and should be incorporated into models which try to explain neural encoding. In this article we provide commentary on a recently published study by Coen-Cagli and Solomon that incorporates spike variability in a quantitative model, by explaining it as a function of divisive normalization. We consider the potential role of neural oscillations in this process as a potential bridge between the current microscale findings and response variability at the mesoscale/macroscale level.


2009 ◽  
Vol 16 (2) ◽  
pp. 388-393 ◽  
Author(s):  
MATTHEW RYAN ◽  
REBECCA MARTIN ◽  
MARTHA B. DENCKLA ◽  
STEWART H. MOSTOFSKY ◽  
E. MARK MAHONE

AbstractInterstimulus “jitter” involves randomization of intervals between successive stimulus events, and can facilitate performance on go/no-go tests among healthy adults, though its effect in clinical populations is unclear. Children with Attention-deficit/Hyperactivity Disorder (ADHD) commonly exhibit deficient response control, leading to increased intra-subject variability (ISV), which has been linked to anomalous functioning within frontal circuits, as well as their interaction with posterior “default mode” regions. We examined effects of interstimulus jitter on response variability in 39 children, ages 9–14 years (25 ADHD, 14 controls). Participants completed 2 computerized go/no-go tests: one with fixed interstimulus interval (ISI) and one with jittered ISI. Repeated measures analysis of variance (ANOVA) revealed a significant group–by test interaction, such that introduction of jitter produced a significant decrease in ISV among children with ADHD, but not among controls. Whereas children with ADHD were significantly more variable than controls on the go/no-go test with fixed ISI, their performance with jittered ISI was equivalent to that of controls. Jittering stimulus presentation provides a nonpharmacologic mechanism for improving response control in ADHD. This bottom-up approach may be mediated by increases in vigilance through noradrenergic circuits that facilitate maintenance of frontal circuits critical to response control. (JINS, 2010, 16, 388–393.)


2015 ◽  
Vol 113 (1) ◽  
pp. 58-70 ◽  
Author(s):  
Nico A. Jansen ◽  
Glenn J. Giesler

We tested the possibility that the trigeminoparabrachial tract (VcPbT), a projection thought to be importantly involved in nociception, might also contribute to sensation of itch. In anesthetized rats, 47 antidromically identified VcPbT neurons with receptive fields involving the cheek were characterized for their responses to graded mechanical and thermal stimuli and intradermal injections of pruritogens (serotonin, chloroquine, and β-alanine), partial pruritogens (histamine and capsaicin), and an algogen (mustard oil). All pruriceptive VcPbT neurons were responsive to mechanical stimuli, and more than half were additionally responsive to thermal stimuli. The majority of VcPbT neurons were activated by injections of serotonin, histamine, capsaicin, and/or mustard oil. A subset of neurons were inhibited by injection of chloroquine. The large majority of VcPbT neurons projected to the ipsilateral and/or contralateral external lateral parabrachial and Kölliker-Fuse nuclei, as evidenced by antidromic mapping techniques. Analyses of mean responses and spike-timing dynamics of VcPbT neurons suggested clear differences in firing rates between responses to noxious and pruritic stimuli. Comparisons between the present data and those previously obtained from trigeminothalamic tract (VcTT) neurons demonstrated several differences in responses to some pruritogens. For example, responses of VcPbT neurons to injection of serotonin often endured for nearly an hour and showed a delayed peak in discharge rate. In contrast, responses of VcTT neurons endured for roughly 20 min and no delayed peak of firing was noted. Thus the longer duration responses to 5-HT and the delay in peak firing of VcPbT neurons better matched behavioral responses to stimulation in awake rats than did those of VcTT neurons. The results indicate that VcPbT neurons may have important roles in the signaling of itch as well as pain.


1977 ◽  
Vol 86 (1) ◽  
pp. 37-48 ◽  
Author(s):  
Allen L. Rupert ◽  
Donald M. Caspary ◽  
George Moushegian

Most studies in auditory neurophysiology have utilized tonal stimuli to determine the coding properties of neurons in the cochlear nuclei. In this investigation of the kangaroo rat, cochlear nuclei, neuronal responses to vowel sounds, as well as tones, were studied. The vowel sounds, each about 40 msec in duration were: [a], [i], [I], [ε], [o], [u], [Formula: see text] [æ], and [ṛ]. Five were linked together to form a 200 msec stimulus and various combinations of five vowel sounds provided us with 18 different stimuli. The results show that neurons in the cochlear nuclei are remarkably sensitive and selective to vowel sounds. Furthermore, the responses of these neurons to pure tones do not provide a complete basis to predict the types of responses to the vowel sounds. More significant is the finding that the neural discharge rate and pattern of discharge to a particular vowel may depend on where the vowel appears in the stimulus and what other vowel precedes it. This vowel positional effect is not the same for every neuron. We have called this phenomenon a neural “set.”


1980 ◽  
Vol 58 (7) ◽  
pp. 778-786 ◽  
Author(s):  
Y. C. Wong ◽  
H. C. Kwan ◽  
J. T. Murphy

Adult monkeys were trained to perform a restorative movement about the wrist following a torque disturbance. The movement was guided by visual information on a video display. Recordings were made from single neurons in the forelimb area of precentral cortex. Individual neurons were identified with respect to functional coupling to single forelimb joints by means of passive sensory stimulation and intracortical microstimulation. Neurons were classified as wrist (flexion–extension (F–E)) and nonwrist (F–E). Statistical analyses of activities of these two populations revealed that those belonging to the wrist (F–E) population exhibited a lower response variability than those belonging to the nonwrist (F–E) neurons. This was true with respect to both the sensory event (perturbation) and the motor event (restorative movement) at the wrist. The results thus provide additional evidence in support of the hypothesis that neuronal populations in precentral cortex which are somatotopically identified are preferentially utilized in voluntary motor tasks.


Sign in / Sign up

Export Citation Format

Share Document